Question

In: Advanced Math

Co-planar test is an important step in continuous collision detection. Let p0= [0,0,0], p1= [1,0,1], p2=...

Co-planar test is an important step in continuous collision detection. Let p0= [0,0,0], p1= [1,0,1], p2= [0,1,1], p3= [1,1,0] be four points and v0= [0,0,0], v1= [1,0,0], v2= [0,1,0], v3= [0,1,1] be their velocities. Please derive the formula to compute the time when these four points are co-planar. (Hint: You may use Unity or calculator to compute dot and cross products. You don’t need to give the time solution.)

Solutions

Expert Solution


Related Solutions

Let B = (p0, p1, p2) be the standard basis for P2 and B = (q1,...
Let B = (p0, p1, p2) be the standard basis for P2 and B = (q1, q2, q3) where: q1 = 1 + x , q2 = x + x 2 and q3 = 2 + x + x 2 1. Show that S is a basis for P2. 2. Find the transition matrix PS→B 3. Find the transition matrix PB→S 4. Let u = 3 + 2x + 2x 2 . Deduce the coordinate vector for u relative to...
. Consider this hypothesis test: H0: p1 - p2 = < 0 Ha: p1 - p2...
. Consider this hypothesis test: H0: p1 - p2 = < 0 Ha: p1 - p2 > 0 Here p1 is the population proportion of “happy” of Population 1 and p2 is the population proportion of “happy” of Population 2. Use the statistics data from a simple random sample of each of the two populations to complete the following:​​​​​​ Population 1 Population 2 Sample Size (n) 1000 1000 Number of “yes” 600 280 a. Compute the test statistic z. b....
Write a function collision(p1, start1, p2, start2) that takes p1 and start1 of one vehicle, and...
Write a function collision(p1, start1, p2, start2) that takes p1 and start1 of one vehicle, and p2 and start2 of another vehicle, and checks whether the two vehicles will collide (i.e., at some stage they will be in the same cell at the same time). The function should return a tuple containing the (x,y) coordinates of the cell where they collide or None if they do not ever collide. If the two vehicles collide in multiple cells, return the coordinates...
1. Consider this hypothesis test: H0: p1 - p2 = < 0 Ha: p1 - p2...
1. Consider this hypothesis test: H0: p1 - p2 = < 0 Ha: p1 - p2 > 0 Here p1 is the population proportion of “happy” of Population 1 and p2 is the population proportion of “happy” of Population 2. Use the statistics data from a simple random sample of each of the two populations to complete the following:​​​​​​ Population 1 Population 2 Sample Size (n) 1000 1000 Number of “yes” 600 280 a. Compute the test statistic z. b....
Consider this hypothesis test: H0: p1 - p2 = 0 Ha: p1 - p2 > 0...
Consider this hypothesis test: H0: p1 - p2 = 0 Ha: p1 - p2 > 0 Here p1 is the population proportion of “yes” of Population 1 and p2 is the population proportion of “yes” of Population 2. Use the statistics data from a simple random sample of each of the two populations to complete the following: (8 points) Population 1 Population 2 Sample Size (n) 500 700 Number of “yes” 400 560   Compute the test statistic z. What is...
Let p0 = 1+x; p1 = 1+3x+x2; p2 = 2x+x2; p3 = 1+x+x2 2 R[x]. (a)...
Let p0 = 1+x; p1 = 1+3x+x2; p2 = 2x+x2; p3 = 1+x+x2 2 R[x]. (a) Show that fp0; p1; p2; p3g spans the vector space P2(R). (b) Reduce the set fp0; p1; p2; p3g to a basis of P2(R).
For developing countries in Africa and the Americas, let p1 and p2 be the respectiveproportions of...
For developing countries in Africa and the Americas, let p1 and p2 be the respectiveproportions of babies with a low birth weight (below 2500 grams). A randomsample of n1 = 2000 African women yielded y1 = 750 with nutritional anemia anda random sample of n2 = 2000 women from the Americas yielded y2 = 650 womenwith nutritional anemia. We shall test H0: p1 = p2 against the alternative hypothesisH1: p1 > p2 at α = 0.05. 1. What is the...
PART A 1. Consider this hypothesis test: H0: p1 - p2 = < 0 Ha: p1...
PART A 1. Consider this hypothesis test: H0: p1 - p2 = < 0 Ha: p1 - p2 > 0 Here p1 is the population proportion of “yes” of Population 1 and p2 is the population proportion of “yes” of Population 2. Use the statistics data from a simple random sample of each of the two populations to complete the following: (8 points) Population 1 Population 2 Sample Size (n) 500 700 Number of “yes” 400 560 Compute the test...
For developing countries in Africa and the Americas, let p1 and p2 be the respective proportions...
For developing countries in Africa and the Americas, let p1 and p2 be the respective proportions of babies with a low birth weight (below 2500 grams). A random sample of n1 = 2000 African women yielded y1 = 750 with nutritional anemia anda random sample of n2 = 2000 women from the Americas yielded y2 = 650 women with nutritional anemia. We shall test H0: p1 = p2 against the alternative hypothesis H1: p1 > p2 at α = 0.05.
Let p1 and p2 be the respective proportions of women with iron-deficiency anemia in each of...
Let p1 and p2 be the respective proportions of women with iron-deficiency anemia in each of two developing countries. A random sample of 2000 women from the first country yielded 439 women with iron-deficiency anemia, and an independently chosen, random sample of 1700 women from the second country yielded 316 women with iron-deficiency anemia. Can we conclude, at the 0.05 level of significance, that the proportion of women with anemia in the first country is greater than the proportion of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT