Question

In: Advanced Math

In RU (R is the reals, U is the usual topology), prove that any open interval...

In RU (R is the reals, U is the usual topology), prove that any open interval (a, b) is homeomorphic to the interval (0, 1). (Hint: construct a function f : (a, b) → (0, 1) for which f(a) = 0 and f(b) = 1. Show that your map is a homeomorphism by showing that it is a continuous bijection with a continuous inverse.)

Solutions

Expert Solution


Related Solutions

Show that any open subset of R (w. standard topology) is a countable union of open...
Show that any open subset of R (w. standard topology) is a countable union of open intervals. Please explain how to do, I only understand why it is true. What is required to fully prove this. What definitions should I be using.
Calculate the relative (sub-space) topology with respect to the usual (metric) topology in R (the set...
Calculate the relative (sub-space) topology with respect to the usual (metric) topology in R (the set of real numbers), for the following sub-sets of R: X = Z, where Z represents the set of integers Y = {0} U {1 / n | n is an integer such that n> 0} Calculate (establish who are) the closed (relative) sets for the X and Y sub-spaces defined above. Is {0} open relative to X? Is {0} open relative to Y?
Show that any open subset of R (w std. topology) is a countable union of open intervals.
Show that any open subset of R (w std. topology) is a countable union of open intervals.What is the objective of this problem and enough to show ?
Topology (a) Prove that the interval [0,1] with the subspace topology is connected from basic principles....
Topology (a) Prove that the interval [0,1] with the subspace topology is connected from basic principles. (b) Prove that the interval [0,1] with the subspace topology is compact from basic principles.
Let R be the real line with the Euclidean topology. (a) Prove that R has a...
Let R be the real line with the Euclidean topology. (a) Prove that R has a countable base for its topology. (b) Prove that every open cover of R has a countable subcover.
Prove 1. For each u ∈ R n there is a v ∈ R n such...
Prove 1. For each u ∈ R n there is a v ∈ R n such that u + v= 0 2. For all u, v ∈ R n and a ∈ R, a(u + v) = au + av 3. For all u ∈ R n and a, b ∈ R, (a + b)u = au + bu 4.  For all u ∈ R n , 1u=u
3) Prove that the cardinality of the open unit interval, (0,1), is equal to the cardinality...
3) Prove that the cardinality of the open unit interval, (0,1), is equal to the cardinality of the open unit cube: {(x,y,z) E R^3|0<x<1, 0<y<1, 0<Z<1}. [Hint: Model your argument on Cantor's proof for the interval and the open square. Consider the decimal expansion of the fraction 12/999. It may prove handdy]
we have defined open sets in R: for any a ∈ R, there is sigma >...
we have defined open sets in R: for any a ∈ R, there is sigma > 0 such that (a − sigma, a + sigma) ⊆ A. (i) Let A and B be two open sets in R. Show that A ∩ B is open. (ii) Let {Aα}α∈I be a family of open sets in R. Show that ∪(α∈I)Aα is open. Hint: Follow the definition of open sets. Please be specific and rigorous! Thanks!
A. Prove that R and the real interval (0, 1) have the same cardinality.
A. Prove that R and the real interval (0, 1) have the same cardinality.
Prove that any linear transformation ? : R? → R? maps a line passing through the...
Prove that any linear transformation ? : R? → R? maps a line passing through the origin to either the zero vector or a line passing through the origin. Generalize this for planes and hyperplanes. What are the images of these under linear transformations?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT