In: Statistics and Probability
Problem 5-4: In a binomial distribution, n = 12 and π = .60. Find the following probabilities.
Assume a binomial distribution where n = 5 and π = .30.
Solution:
Problem 5-4: In a binomial distribution, n = 12 and π = .60.
Using binomial probability formula ,
P(X = x) = (n C x) * πx * (1 - π)n - x ; x = 0 ,1 , 2 , ....., n
a)
P(X = 5) = (12C 5) * 0.605 * (1 - 0.60)12 - 5 = 0.10090237133
P(X = 5) = 0.10090237133
b)
P(X 5 )
= P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X = 4) + P(X = 5)
= (12C 0) * 0.600 * (1 - 0.60)12 - 0 + (12C 1) * 0.601 * (1 - 0.60)12 - 1 +(12C 2) * 0.602 * (1 - 0.60)12 - 2 +(12C 3) * 0.603 * (1 - 0.60)12 - 3 +(12C 4) * 0.604 * (1 - 0.60)12 - 4 +(12C 5) * 0.605 * (1 - 0.60)12 -5
= 0.00001677722+0.00030198989+0.00249141658+0.01245708288+0.04204265472+0.10090237
= 0.15821229261
P(X 5 ) = 0.15821229261
c)
P(X 6)
= 1 - P(X < 6)
= 1 - { P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X = 4) + P(X = 5) }
= 1- {(12C 0) * 0.600 * (1 - 0.60)12 - 0 + (12C 1) * 0.601 * (1 - 0.60)12 - 1 +(12C 2) * 0.602 * (1 - 0.60)12 - 2 +(12C 3) * 0.603 * (1 - 0.60)12 - 3 +(12C 4) * 0.604 * (1 - 0.60)12 - 4 +(12C 5) * 0.605 * (1 - 0.60)12 -5 }
= 1 - {0.15821229261}
= 0.84178770739
P(X 6) = 0.84178770739
Question :
Assume a binomial distribution where n = 5 and π = .30.
Determine the mean and standard deviation of the distribution from the general definitions of the formulas or template.
Mean = = n * π = 5 * 0.30 = 1.5
Mean = 1.5
Standard deviation = = [n *π * (1 - π )] = [5 * 0.30 (1 - 0.30) = 1.05 = 1.0247
Standard deviation = 1.0247