Question

In: Advanced Math

Let C0=[0,1]. Cn is obtained by removing the middle open interval of length α/3n from each...

Let C0=[0,1]. Cn is obtained by removing the middle open interval of length α/3n from each interval of Cn-1 where α∈(0,1).

Let C=⋂Cn. Prove that C contains only boundary points, i.e., x∈C is a boundary point of C if every neighborhood of x contains at least one point in C and at least one point not in C.

Solutions

Expert Solution


Related Solutions

Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1)....
Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1). (a) Find the cumulative distribution function of X/Y. (b) Find the cumulative distribution function of XY. (c) Find the mean and variance of XY/Z.
6.1.5. Problem. Let J be the open unit interval (0, 1). For each a let Ua...
6.1.5. Problem. Let J be the open unit interval (0, 1). For each a let Ua = ?a, a + 1 ?, and let U = {Ua : 0 ≤ a ≤ 34 }. Then certainly U covers J . (a) Find a finite subfamily of U which covers J. (b) Explain why a solution to (a) does not suffice to show that J is compact. (c) Show that J is not compact.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT