Question

In: Physics

1. A solid uniform cylinder is rolling without slipping. What fraction of this cylinder's kinetic energy...

1. A solid uniform cylinder is rolling without slipping. What fraction of this cylinder's kinetic energy is rotational? (Note: the moment of inertia of a cylinder of mass M and radius R rotating about its central axis is 0.5MR2.)

A 1/3

B 2/3

C 1/2

D 1/4

E 3/4

2. A public art installation consists of three 25-kg glass sculptures hung side-by-side with steel wires of length 1.00 m, 2.00 m and 3.00 m. If the wires all have the same diameter, which one stretches the greatest distance?

A All three wires will stretch the same distance.

B The 1.00-m wire will stretch the greatest distance.

C The 2.00-m wire will stretch the greatest distance.

D The 3.00-m wire will stretch the greatest distance.

E There is not enough information to say.

Solutions

Expert Solution

(1)

Correct Option: A 1/3

The moment of inertia of the cylinder is

Let v be translation speed of the cylinder and be the angular speed of the cylinder. For rolling without slipping motion,

The rotational kinetic energy of the cylinder is

The translation kinetic energy of the cylinder is

Total kinetic energy of the cylinder is

The fraction of rotational energy is

(2)

Correct Option: D The 3.00-m wire will stretch the greatest distance.

The change in length of a wire of length L and cross-sectional area A when it is stretched by force F is given by

Each sculpture has mass m=25kg, the force applied by each of the three sculpture is the same.

F=W=mg

The diameter of each wire is same, so they all have the same cross sectional area.

The three wires are made of steel, so Young's modulus for the three wires is the same.

Quantities F, A, and Y are same for the three wires. So, the change in length is directly proportional to the length of the wire L. Longer the wire, more will be the stretch. Therefore, 3.00-m wire will stretch the greatest distance.


Related Solutions

A disc and solid sphere are both rolling without slipping so that both have a kinetic...
A disc and solid sphere are both rolling without slipping so that both have a kinetic energy of 294. What is the translational kinetic energy of the disc ? What is the translational kinetic energy of the solid sphere ?
A uniform solid cylindrical log begins rolling without slipping down a ramp that rises 15.0 ∘...
A uniform solid cylindrical log begins rolling without slipping down a ramp that rises 15.0 ∘ above the horizontal. After it has rolled 4.50 m along the ramp, what is the magnitude of the linear acceleration of its center of mass?
Rotational Inertia –Rolling Kinetic Energy. A solid sphere, a hollow sphere, a hollow cylinder, and a...
Rotational Inertia –Rolling Kinetic Energy. A solid sphere, a hollow sphere, a hollow cylinder, and a solid cylinder, all of with same mass (M=0.25 kg ) and radius(R= 0.20 m) – are placed at the top of an incline at height (h= 1.5 m ). All the objects are released from rest at the same moment to roll down without slipping. Hint: search for the rotational inertia formula for each of the rolling object first. Then calculate each of them...
A hoop, a solid disk, and a solid sphere, all with the same mass and the same radius, are set rolling without slipping up an incline, all with the same initial kinetic energy.
A hoop, a solid disk, and a solid sphere, all with the same mass and the same radius, are set rolling without slipping up an incline, all with the same initial kinetic energy. Which goes furthest up the incline? The hoop The disk The sphere They all roll to the same height Briefly explain your answer to the previous question. The same three objects as in the previous question are set rolling without slipping up an incline, all with the same initial linear speed. Which goes farthest...
Consider a cylinder rolling, without slipping, on an inclined flat surface (a ramp) that forms an...
Consider a cylinder rolling, without slipping, on an inclined flat surface (a ramp) that forms an angle  = 30 º with respect to the horizontal direction. An external force F = 10 N parallel to the ramp is pushing the cylinder in the uphill direction, without creating any torque (that is, the force is acting directly on the center of mass of the cylinder). If the cylinder is released at a time t = 0 with a linear velocity...
3) A solid cylinder with mass 4kg and radius r=0.5 m rolls without slipping from a...
3) A solid cylinder with mass 4kg and radius r=0.5 m rolls without slipping from a height of 10 meters on an inclined plane with length 20 meters. a) Find the friction force so that it rolls without slippingb) Calculate the minimum coefficient of rolling friction muc) Calculate its speed as it arrives at the bottom of the inclined plane.
What is the kinetic energy associated with the rotation of the cylinder?
A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad s-1. The radius of the cylinder is 0.25 m. What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of angular momentum of the cylinder about its axis?
A 2.2 kg hoop 1.2 in diameter is rolling to the right without slipping on a...
A 2.2 kg hoop 1.2 in diameter is rolling to the right without slipping on a horizontal floor at a steady 2.6 rad/s. A uniform cylinder with its outer radius two times it’s inner radius with the same mass, same diameter as the hoop and also rolls without slipping with the same angular frequency. What is the ratio of rotational kinetic energies between the hoop and the uniform cylinder? What is the ratio of the rotational frequency between the hoop...
5. What fraction of rest mass energy is converted from potential energy to kinetic energy when...
5. What fraction of rest mass energy is converted from potential energy to kinetic energy when a particle comes from infinity to the event horizon of a black hole?
1. A hollow sphere (mass 2.75 kg, radius 19.9 cm) is rolling without slipping along a...
1. A hollow sphere (mass 2.75 kg, radius 19.9 cm) is rolling without slipping along a horizontal surface, so its center of mass is moving at speed vo. It now comes to an incline that makes an angle 25.6o with the horizontal, and it rolls without slipping up the incline until it comes to a complete stop. Find a, the magnitude of the linear acceleration of the ball as it travels up the incline, in m/s2. 2. At t =...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT