Question

In: Statistics and Probability

Discuss the importance of using a normal distribution when comparing standardized test scores for students around...

Discuss the importance of using a normal distribution when comparing standardized test scores for students around the country who take different tests. Explain how this information can this be used by educators to make better decisions related to student learning.

150 words at least

typed paragraph form please

Solutions

Expert Solution

A standard score is a score that gives us a distance of the raw score with respect to a certain points(such as mean) in terms of standard deviation units. If we assume normality for the population of the scores, we may use Z-score as our choice of standardized scores.

Now Z-score(Z) measures for a normal population how many times of standard deviation() is a raw score(X) differs from the mean(), i.e.

.

Now if we assume normality for population of the test score obtained by students around the country, then using Z-score we can compare two scores that arises from different normal population with differing mean and standard deviation. So Z-score allows us to get all the scores in a same normal population with mean 0 and standard deviation 1, i.e. standard normal distribution.

From the properties of standard normal distribution, we can also say that empirically,

So using normal distribution, the standard score will most certainly lie between +3 and -3.

Using Z-score the educator can easily measure the performance of the students who take different tests. As different tests usually have different mean and standard deviations, normally two score from different tests should not be compared in the same scale.

Now a Z-score between +2 and +3 confirms that the student is better than the most. Z-score between -3 and -2 confirms that the student needs more attention as the score is deviating far from the average score of the population.

Please Upvote if the answer solves your problem.


Related Solutions

S.M.A.R.T. test scores are standardized to produce a normal distribution with a mean of 230 and...
S.M.A.R.T. test scores are standardized to produce a normal distribution with a mean of 230 and a standard deviation of 35. Find the proportion of the population in each of the following S.M.A.R.T. categories. (6 points) Genius: Score of greater than 300. Superior intelligence: Score between 270 and 290. Average intelligence: Score between 200 and 26
5. Some MATH323 test scores are standardized to a Normal distribution model with a mean of...
5. Some MATH323 test scores are standardized to a Normal distribution model with a mean of S+T and a standard deviation of F+L. Do 4 of the following parts only; mark the ones that you want graded by X. a. ____ Determine the minimum score to be in the top 20% of all scores. Ans.___________ b. ____ If the term “A student” is used to describe a student whose score is in the top 10% of all scores. What is...
The scores on a standardized math test for 8th grade children form a normal distribution with...
The scores on a standardized math test for 8th grade children form a normal distribution with a mean of 80 and a standard deviation of 12. (8 points) a) What is the probability of obtaining a sample mean greater than 82 for a sample of n = 36? b) What is the probability of obtaining a sample mean less than 78 for a sample of n = 9?
Students’ scores on a test in a public administration course follow a normal distribution with a...
Students’ scores on a test in a public administration course follow a normal distribution with a mean of 150 points and a standard deviation of 12. One student who scored 161 on the test and received the grade of B is considering protesting his grade. He feels that the professor did not like him and awarded him a lower grade than his score deserved. The professor disagrees: She maintains that the top 10 percent of scores were given an A,...
The scores of fourth grade students on a mathematics achievement test follow a normal distribution with...
The scores of fourth grade students on a mathematics achievement test follow a normal distribution with a mean of 75 and standard deviation of 4. What is the probability that a single student randomly chosen form all those taking the test scores 80 or higher? What is the probability that the sample mean score of 64 randomly selected student is 80 or higher?
nn psychology students took a standardized test. The scores are summarized in the GFDT below.       Scores      ...
nn psychology students took a standardized test. The scores are summarized in the GFDT below.       Scores          Frequency    220 - 224 14 225 - 229 15 230 - 234 16 235 - 239 240 - 244 17 245 - 249 40 The scores are also described in the cumulative table shown below.       Scores          Frequency    less than 225 14 less than 230 29 less than 235 45 less than 240 63 less than 245 80 less than 250 nn What is the...
The distribution of scores on a recent test closely followed a Normal Distribution with a mean...
The distribution of scores on a recent test closely followed a Normal Distribution with a mean of 22 points and a standard deviation of 2 points. For this question, DO NOT apply the standard deviation rule. (a) What proportion of the students scored at least 21 points on this test, rounded to five decimal places? (b) What is the 63 percentile of the distribution of test scores, rounded to three decimal places?
The distribution of scores on a recent test closely followed a Normal Distribution with a mean...
The distribution of scores on a recent test closely followed a Normal Distribution with a mean of 22 points and a standard deviation of 2 points. For this question, DO NOT apply the standard deviation rule. (a) What proportion of the students scored at least 29 points on this test, rounded to five decimal places? (b) What is the 85 percentile of the distribution of test scores, rounded to three decimal places?
The distribution of scores on a recent test closely followed a Normal Distribution with a mean...
The distribution of scores on a recent test closely followed a Normal Distribution with a mean of 22 points and a standard deviation of 2 points. For this question, DO NOT apply the standard deviation rule. (a) What proportion of the students scored at least 29 points on this test, rounded to five decimal places? (b) What is the 20 percentile of the distribution of test scores, rounded to three decimal places?
The distribution of scores on a recent test closely followed a Normal Distribution with a mean...
The distribution of scores on a recent test closely followed a Normal Distribution with a mean of 22 points and a standard deviation of 2 points. For this question, DO NOT apply the standard deviation rule. (a) What proportion of the students scored at least 21 points on this test, rounded to five decimal places? (b) What is the 63 percentile of the distribution of test scores, rounded to three decimal places?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT