Question

In: Mechanical Engineering

Air flows through a nozzle which has inlet areas of (10 cm2 ). If the air...

Air flows through a nozzle which has inlet areas of (10 cm2
). If the air has a velocity of (120 m/s) a
temperature (300K) and a pressure of (700kpa) at the inlet section and a pressure of (250kpa) at the exit,
find the mass flow rate through the nozzle and the velocity at the exit of the nozzle, assuming one-
dimensional isentropic flow. (R=287 J/kg. K), (K=1.4). (25%)

Solutions

Expert Solution

I hope you understand. Comment if you have any doubt.


Related Solutions

Air flows in a converging-diverging nozzle. The nozzle throat area is 50 cm2. The total pressure...
Air flows in a converging-diverging nozzle. The nozzle throat area is 50 cm2. The total pressure at the nozzle inlet is 1 MPa. The total pressure at the nozzle exit is 650 kPa. The Mach number at the nozzle exit is 0.70. Find the nozzle exit area. 51.7 cm2 84.2 cm2 35.6 cm2 54.7 cm2
Consider a diffuser in which air flows steadily. At the inlet of the diffuser the pressure,...
Consider a diffuser in which air flows steadily. At the inlet of the diffuser the pressure, the temperature and the velocity of the air are 100 kPa, 110oC and 175 m/s, respectively. At the exit of the diffuser the pressure, the velocity of the gas and the area of the diffuser are 110 kPa, 15 m/s and 0.1 m2 , respectively. Accounting for an heat loss of 3 kJ/kg from the diffuser to the surroundings at 100 kPa and 25oC...
A hydraulic lift has two connected pistons with cross-sectional areas 10 cm2 and 490 cm2. It...
A hydraulic lift has two connected pistons with cross-sectional areas 10 cm2 and 490 cm2. It is filled with oil of density 700 kg/m3. 1. What mass must be placed on the small piston to support a car of mass 103 kg at equal fluid levels? m = 20.41kg 2. With the lift in balance with equal fluid levels, a person of mass 60 kg gets into the car. What is the equilibrium height difference in the fluid levels in...
Air flows steadily through a converging-diverging nozzle with a throat area equal to 1.395 in2 ,...
Air flows steadily through a converging-diverging nozzle with a throat area equal to 1.395 in2 , and an exit area equal to 2.79 in2 . A normal shock wave stands at the exit plane of the nozzle. The exiting jet flows into a large room, where the pressure is equal to 14.7 psia. The temperature of the air in the exit jet stream, just after the nozzle exit, is measured at 87 deg F. Calculate the mass flow rate through...
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the...
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the stagnation temperature is 90°C. If the Mach number at the exit is 0.3, determine the direction and the rate of heat transfer. For the same conditions at the inlet, determine the amount of heat that must be transferred to the system if the flow is to be sonic at the exit of the duct.
Air passes through a jet engine nozzle operating at steady state. The flow at the nozzle...
Air passes through a jet engine nozzle operating at steady state. The flow at the nozzle inlet has a temperature of 900° F. The nozzle inlet has an area of 5 ft2. The flow at the nozzle outlet has a temperature of 875° F, a specific volume of 90 ft3/lb, and a velocity of 600 ft/s. The nozzle outlet has an area of 2 ft2. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats...
Air flows down a pipe with a diameter of 0.15 m. At the inlet to the...
Air flows down a pipe with a diameter of 0.15 m. At the inlet to the pipe, the Mach number is 0.1, the pressure is 70 kPa, and the temperature is 35°C. If the flow can be assumed to be adiabatic and if the mean friction factor is 0.005, determine the length of the pipe if the Mach number at the exit is 0.6. Also, find the pressure and temperature at the exit to the pipe.
Air flows in a pipe with a diameter, D=50 mm. The inlet conditions are: M1 =...
Air flows in a pipe with a diameter, D=50 mm. The inlet conditions are: M1 = 3; total pressure, P01 = 1000 kPa absolute; and temperature, T1 = 550 K. The friction coefficient is, f = 0.004. The exit Mach number decreases with the length of the pipe. Plot the following while the exit Mach number to be changed from 2.5 to 0.99 with decrements of ?M=0.01: a) L, length of the pipe that is going to give the desired...
Consider a pipe (diameter of 50 mm) with air flowing through it. The inlet conditions are:...
Consider a pipe (diameter of 50 mm) with air flowing through it. The inlet conditions are: Mach 3; total pressure = 1000 kPa and 550 K. The friction coefficient (f) is 0.004. The exit Mach number decreases with the length of the pipe. Assume adiabatic, steady flow. Write a short Matlab code and plot the following, while the exit Mach number changes from 2.5 to 0.99 with increments of ?M=0.01. Find the length of the pipe that is going to...
Air flows through a 8-in-diameter, 60-ft-long adiabatic duct with inlet conditions of V1= 550 ft/s, T01=...
Air flows through a 8-in-diameter, 60-ft-long adiabatic duct with inlet conditions of V1= 550 ft/s, T01= 650 R, and P1= 50 psia. For an average friction factor of 0.03, determine the velocity, temperature, and pressure at the exit of the duct. Please DO NOT merely copy other expert's work. I would like original work.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT