Question

In: Physics

Consider a uniform bar of length 3.99m and weight 369 N. It is suspended horizontally by...

Consider a uniform bar of length 3.99m and weight 369 N. It is suspended horizontally by two vertical cables at each end. Cable A can support a maximum tension of 639.0 N without breaking, and cable B can support up to 396.0 N. You want to place a small weight on this bar.

a)What is the heaviest weight you can put on without breaking either cable?

c) Where should you put this weight?

c) To strengthen the support of the bar, two more cables that can each support up to 396 N are connected - one from one side of the bar to the bottom of cable b, the other from the other side of the bar to the bottom of cable a (diagonal cables) What is now the heaviest weight you can put on the bar without breaking a cable and where should you put this weight?

Solutions

Expert Solution

when diagonal cables are in action:-


Related Solutions

A thin, uniform bar of length L and mass M is suspended horizontally at rest. It...
A thin, uniform bar of length L and mass M is suspended horizontally at rest. It is suddenly released and, at the same instant, it is struck a sharp blow vertically upwards at one end – the duration of the impulse is negligibly short. (a) Explain the meaning of the equation Fnet = Macom (com stands for center of mass). If we call z the vertical direction, write an equation for zCOM(t), draw a sketch of zCOM(t) vs t, and...
Consider a long (length = 15 m) uniform wooden beam (mass = 60 kg) attached horizontally...
Consider a long (length = 15 m) uniform wooden beam (mass = 60 kg) attached horizontally to a wall that can only support a vertical load ( The horizontal component of the force of the wall on the beam is identically zero). There is a chandelier (mass = 40 kg) hanging at a distance = 4.21 meter from the end of the beam that is attached to the wall. There is a vertical cable hanging down from the ceiling that...
A uniform steel beam of length 5.00 m has a weight of 4.50 ✕ 10^3 N....
A uniform steel beam of length 5.00 m has a weight of 4.50 ✕ 10^3 N. One end of the beam is bolted to a vertical wall. The beam is held in a horizontal position by a cable attached between the other end of the beam and a point on the wall. The cable makes an angle of 25.0° above the horizontal. A load whose weight is 12.0 ✕ 10^3 N is hung from the beam at a point that...
A uniform rod of length 2.00 m and mass 5.00 kg is suspended by two ropes...
A uniform rod of length 2.00 m and mass 5.00 kg is suspended by two ropes of negligible mass. The rope at the lower end is horizontal. The rope at the upper end makes an angle φ = 30.0◦ with the vertical. φ θ (a) Draw a free body diagram for the rod. (b) What is the tension in the upper rope? (c) What is the tension in the lower (horizontal) rope? (d) What is the angle θ the rod...
In the figure, a uniform plank, with a length L of 5.23 m and a weight...
In the figure, a uniform plank, with a length L of 5.23 m and a weight of 280 N, rests on the ground and against a frictionless roller at the top of a wall of height h = 1.59 m. The plank remains in equilibrium for any value of θ = 70.0° or more, but slips if θ < 70.0°. Find the coefficient of static friction between the plank and the ground.
A 10kg weight is attached to a wall horizontally via a spring. The rest (equilibrium) length...
A 10kg weight is attached to a wall horizontally via a spring. The rest (equilibrium) length of the spring is 0.2m. The spring has stiffness coefficient k = 50. The weight drags along the ground, giving an effective damping coefficient of b = 40. We will ignore gravity and all other outside forces on the spring. If the weight is pulled to a position 0.5m away from the wall (thus +0.3m past equilibrium) and then flicked toward the wall at...
A 2.60-N metal bar, 0.850m long and having a resistance of 10.0?, rests horizontally on...
A 2.60-N metal bar, 0.850m long and having a resistance of 10.0? , rests horizontally on conducting wires connecting it to the circuit shown in (Figure 1) . The bar is in a uniform, horizontal, 1.60-T magnetic field and is not attached to the wires in the circuit.What is the acceleration of the bar just after the switchS is closed?
In the figure, a thin horizontal bar AB of negligible weight and length L = 3.2...
In the figure, a thin horizontal bar AB of negligible weight and length L = 3.2 m is hinged to a vertical wall at A and supported at B by a thin wire BC that makes an angle θ = 40° with the horizontal. A block of weight W = 140 N can be moved anywhere along the bar; its position is defined by the distance x = 2.07 m from the wall to its center of mass. Find (a)...
A large crate is suspended by a light string. A bullet is fired horizontally into the...
A large crate is suspended by a light string. A bullet is fired horizontally into the crate and becomes firmly lodged inside it. After being struck by the bullet, the crate swings upward to a maximm height and then swings back up. Just before the collision (time t1), the crate is at rest and the bullet moves horizontally with speed v0. Immediately after the bullet becomes lodged inside the crate (time t2) the bullet and crate move together with speed...
A bullet is firef horizontally into an initially stationary block of wood suspended by a string...
A bullet is firef horizontally into an initially stationary block of wood suspended by a string and remains embedded in the block. The bullets mass is m=0.0085kg while that of the block is M=0.99kg. After the collision the block/bullet system swings and reaches a maximum height of h=1.15m above inital height. Neglect air resostance. A.)Enter an expression for the speed of the block/bullet system immediately after the collision in terms of defined quantities and g. b.)enter an expression for the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT