In: Computer Science
Convert decimal to binary using division method
1. Division method is used to convert only integer part of a decimal number to its equivalent in binary number system.
2. In this method the integer part of the decimal number is continuously divided until we reach a stage where the quotient becomes zero.
3. The reminder that we obtain at each division iteration becomes the value of the weights or the digits in the binary number system.
4. The reminders that we obtain are taken from the last step to first step i.e. the last reminder obtained during the division iteration is the most significant digit (MSD) and the first reminder the we obtained is the least significant digit in the binary number system.
5. You will understand the procedure better with the following illustrative example.
Step1:
Convert
(14)10 decimal number to binary number (?)2
using division method
1st Division
Iteration
Divide 14 by 2
14 ÷ 2 = 7(Quotient) Reminder:0
2nd
Division Iteration
Divide 7 by 2
7 ÷ 2 = 3(Quotient) Reminder=1
3rd Division Iteration
Divide 3 by 2
3 ÷ 2 = 1(Quotient) Reminder=1
Hence, the binary equivalent of the decimal number 14 is (110).
Step2:
Convert
(13)10 decimal number to binary number (?)2
using division method
1st Division
Iteration
Divide 13 by 2
13 ÷ 2 = 6(Quotient) Reminder=1
2nd Division Iteration
Divide 6 by 2
6 ÷ 2 = 3(Quotient) Reminder=0
6th Division Iteration
Divide 3 by 2
3 ÷ 2 = 1(Quotient)
Reminder=1
Remainder from the last
division iteration becomes MSD and reminder from
1st iteration becomes LSD.
Hence, the binary equivalent of the decimal number
13 is (101).
Step3:
Binary Division