Question

In: Math

find the point lying on the intersection of the plane, x + (1/4)y + (1/3)z =...

find the point lying on the intersection of the plane, x + (1/4)y + (1/3)z = 0 and the sphere x 2 + y 2 + z 2 = 25 with the largest z-coordinate. (x,y,z)=(_)

Solutions

Expert Solution


Related Solutions

Find the coordinates of the point (x, y, z) on the plane z = 4 x...
Find the coordinates of the point (x, y, z) on the plane z = 4 x + 1 y + 4 which is closest to the origin.
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z):...
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=c}. (b) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): x=a}. (c) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): y=b}. *(2) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=kx+b} assuming both b and k are positive. (a) For what value of...
Find the point of intersection of the lines (x-2)/- 3 = (y-2)/6 = z-3 & (x-3)/2...
Find the point of intersection of the lines (x-2)/- 3 = (y-2)/6 = z-3 & (x-3)/2 = y+5 = (z+2)/4. Write the answer as (a, b, c). If they are not cut, write: NO
Find the equation of the plane through the point (1,1,1) which is perpendicular to the line of intersection of the two planes x−y−3z=−1 and x−3y+z= 2.
Find the equation of the plane through the point (1,1,1) which is perpendicular to the line of intersection of the two planes x−y−3z=−1  and x−3y+z= 2.
Homework #3 a) Find the point of intersection of the line x = 2-3t, y =...
Homework #3 a) Find the point of intersection of the line x = 2-3t, y = 3 + t, z = 5t and the plane 3x-2y + z = 5 b)Find the equation of the plane that passes through (1,2,3) and is parallel to the plane 2x-3y + z = 1 c)Find the equation of the plane that contains the line x = 2-3t, y = 3 + t, z = 5t and goes through the point (1,2, 3)
(a) Determine the point of intersection of the line given by (x, y, z) = (4+t, −1+8t, 3+2t), t ∈ R with the plane given by 2x − y + 3z = 15 or show that they do not intersect.
  (a) Determine the point of intersection of the line given by (x, y, z) = (4+t, −1+8t, 3+2t), t ∈ R with the plane given by 2x − y + 3z = 15 or show that they do not intersect. (b) Given the line L : X = (9, 13, −3) + t(1, 4, −2), t ∈ R, the point A with position vector 4i+ 16j −3k and that the point P lies on L such that AP is...
a. consider the plane with equation -x+y-z=2, and let p be the point (3,2,1)in R^3. find...
a. consider the plane with equation -x+y-z=2, and let p be the point (3,2,1)in R^3. find the distance from P to the plane. b. let P be the plane with normal vector n (1,-3,2) which passes through the point(1,1,1). find the point in the plane which is closest to (2,2,3)
Find the equation of the tangent plane to the surface x + y^2 + z^3 +...
Find the equation of the tangent plane to the surface x + y^2 + z^3 + sin(x − yz) = 7 at the point (2, 2, 1).
Find the tangent plane to Z= xsin(x+y) at (1,1,0)
Find the tangent plane to Z= xsin(x+y) at (1,1,0)
Find an equation of the tangent plane to the graph of f(x, y)=sin(x3y2) at point (4,...
Find an equation of the tangent plane to the graph of f(x, y)=sin(x3y2) at point (4, 2).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT