Question

In: Advanced Math

Find the equation of the plane through the point (1,1,1) which is perpendicular to the line of intersection of the two planes x−y−3z=−1 and x−3y+z= 2.

Find the equation of the plane through the point (1,1,1) which is perpendicular to the line of intersection of the two planes x−y−3z=−1  and x−3y+z= 2.

Solutions

Expert Solution

The direction of intersection line L is v.

n1 is perpendicular to v, and n2 is perpendicular to v,

so v = n1 X n2 = (-10,-4,-2)

The plane we want is perpendicular to L, so v is also the normal vector of the plane. Thus, its equation is -10(x-1)-4(y-1)-2(z-1)=0.

=> 5x+2y+z=8.


The normal vector n1 of x−y−3z=−1 is n1=(1,-1,-3).

The normal vector n2 of x−3y+z= 2 is n2=(1,-3,1).

Related Solutions

6) a). Find the equation of the plane through the origin and perpendicular to x+y+z =...
6) a). Find the equation of the plane through the origin and perpendicular to x+y+z = 5 and 2x+y−2z = 7 b). Let A = (−1,3,0), B = (3,2,4) and C = (1,−1,5). ( I ) Find an equation for the plane that passes through these three points. ( II ) Find the area of the triangle determined by these three points.
Consider the following planes. x + y + z = 7,     x + 3y + 3z =...
Consider the following planes. x + y + z = 7,     x + 3y + 3z = 7 (a) Find parametric equations for the line of intersection of the planes. (Use the parameter t.) (x(t), y(t), z(t)) =     (b) Find the angle between the planes. (Round your answer to one decimal place.) °
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z):...
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=c}. (b) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): x=a}. (c) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): y=b}. *(2) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=kx+b} assuming both b and k are positive. (a) For what value of...
find the point lying on the intersection of the plane, x + (1/4)y + (1/3)z =...
find the point lying on the intersection of the plane, x + (1/4)y + (1/3)z = 0 and the sphere x 2 + y 2 + z 2 = 25 with the largest z-coordinate. (x,y,z)=(_)
Find the parametric equations of the line of intersection of the planes x − z =...
Find the parametric equations of the line of intersection of the planes x − z = 1 and y + 2z = 3. (b) Find an equation of the plane that contains the line of intersection above and it is perpendicular to the plane x + y − 2z = 1.
Find the equation of the line through the point P = (0,2,−1) that is perpendicular to...
Find the equation of the line through the point P = (0,2,−1) that is perpendicular to both ⃗v = 〈3,0,1〉 and ⃗w = 〈1,−1,2〉. v and w are vectors by the way
A) Find the equation of the plane that passes through (2, -1,3) and is perpendicular to...
A) Find the equation of the plane that passes through (2, -1,3) and is perpendicular to the line x = 2-3t, y = 3 + t, z = 5t B) Find the equation where the planes 2x-3y + z = 5 and x + y-z = 2 intersect. C) Find the distance from the point (2,3,1) to the x + y-z = 2 plane. D) Find the angle between the planes x + y + z = 1 and x-2y...
(a) Determine the point of intersection of the line given by (x, y, z) = (4+t, −1+8t, 3+2t), t ∈ R with the plane given by 2x − y + 3z = 15 or show that they do not intersect.
  (a) Determine the point of intersection of the line given by (x, y, z) = (4+t, −1+8t, 3+2t), t ∈ R with the plane given by 2x − y + 3z = 15 or show that they do not intersect. (b) Given the line L : X = (9, 13, −3) + t(1, 4, −2), t ∈ R, the point A with position vector 4i+ 16j −3k and that the point P lies on L such that AP is...
Homework #3 a) Find the point of intersection of the line x = 2-3t, y =...
Homework #3 a) Find the point of intersection of the line x = 2-3t, y = 3 + t, z = 5t and the plane 3x-2y + z = 5 b)Find the equation of the plane that passes through (1,2,3) and is parallel to the plane 2x-3y + z = 1 c)Find the equation of the plane that contains the line x = 2-3t, y = 3 + t, z = 5t and goes through the point (1,2, 3)
Given two planes 2x - y + z = 7 and x + 3y - 4z...
Given two planes 2x - y + z = 7 and x + 3y - 4z = 1. (a) Give an orthogonal vector to each plane. (b) Do the planes intersect? Why or why not? (c) If they intersect, find the parametric equation of the intersection line, if not, find the distance of both planes.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT