Question

In: Statistics and Probability

Consider the following sample information randomly selected from two populations. Sample 1 Sample 2 n1=100   n2=50...

Consider the following sample information randomly selected from two populations.

Sample 1 Sample 2

n1=100   n2=50

x1=30   x2=20

a. nbsp Determine if the sample sizes are large enough so that the sampling distribution for the difference between the sample proportions is approximately normally distributed.

b. Calculate a 98​% confidence interval for the difference between the two population proportions.

a. Are the sample sizes sufficiently​ large?

​No, because np overbar and ​n(1minusp overbar​) are less than 5 for both samples.

​No, because np overbar and ​n(1minusp overbar​) are greater than or equal to 5 for both samples.

​Yes, because np overbar and ​n(1minusp overbar​) are less than 5 for both samples. ​

Yes, because np overbar and ​n(1minusp overbar​) are greater than or equal to 5 for both samples.

b. Calculate a 98​% confidence interval for the difference between the two population proportions.

___ ≤​(p1−p2​)≤ ___

Solutions

Expert Solution


Related Solutions

Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 400 n2= 300 p1= 0.49 p2= 0.38 Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table. ___ to ___ c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table. ___ to ___
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 500 n2= 200 p1= 0.42 p2= 0.31 a. What is the point estimate of the difference between the two population proportions (to 2 decimals)? b. Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table. to c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table....
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 500 n2= 300 p1= 0.49 p2= 0.34 a. What is the point estimate of the difference between the two population proportions (to 2 decimals)? b. Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). to c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals).
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 500 n2 = 200 p1 = 0.44 p2 = 0.31 a. What is the point estimate of the difference between the two population proportions (to 2 decimals)?   b. Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals).     to    c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals).     to   
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 400 n2 = 300 p1 = 0.54 p2 = 0.38 (a) What is the point estimate of the difference between the two population proportions? (b) Develop a 90% confidence interval for the difference between the two population proportions. (c) Develop a 95% confidence interval for the difference between the two population proportions.
Consider the following results for two independent random samples taken from two populations. Sample 1: n1...
Consider the following results for two independent random samples taken from two populations. Sample 1: n1 = 40 x̅1 = 13.9 σ1 = 2.3 Sample 2: n2 = 30 x̅2 = 11.1 σ2 = 3.4 What is the point estimate of the difference between the two population means? (to 1 decimal) Provide a 90% confidence interval for the difference between the two population means (to 2 decimals). Provide a 95% confidence interval for the difference between the two population means...
Consider the following results for two independent random samples taken from two populations. Sample 1: n1...
Consider the following results for two independent random samples taken from two populations. Sample 1: n1 = 40 x̅1 = 13.9 σ1 = 2.3 Sample 2: n2 = 30 x̅2 = 11.1 σ2 = 3.4 What is the point estimate of the difference between the two population means? (to 1 decimal) Provide a 90% confidence interval for the difference between the two population means (to 2 decimals). Provide a 95% confidence interval for the difference between the two population means...
Consider the following results for independent samples taken from two populations. Sample 1: n1: 500 p1:...
Consider the following results for independent samples taken from two populations. Sample 1: n1: 500 p1: .46 sample 2: n2: 200 p2: .32 What is the point estimate of the difference between the two population proportions (to 2 decimals)? Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals).
Consider the following results for two samples randomly taken from two populations. Sample A Sample B...
Consider the following results for two samples randomly taken from two populations. Sample A Sample B Sample Size 31 35 Sample Mean 106 102 Sample Standard Deviation 8 7 Test the hypothesis Ho=sigma1-sigma2=0 vs Ha=sigma1-sigma2 do not equal 0 at 5% level of significance. Show all six steps using p-value approach.
Independent random samples of n1 = 800  and n2 = 610 observations were selected from binomial populations...
Independent random samples of n1 = 800  and n2 = 610 observations were selected from binomial populations 1 and 2, and x1 = 336 and x2 = 378 successes were observed. (a) Find a 90% confidence interval for the difference (p1 − p2) in the two population proportions. (Round your answers to three decimal places.) _______ to _______/ (b) What assumptions must you make for the confidence interval to be valid? (Select all that apply.) independent random samples symmetrical distributions for...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT