Question

In: Electrical Engineering

Design a second order (two pole) high-pass filter for the following specifications Cut-off frequency, fo or...

Design a second order (two pole) high-pass filter for the following specifications

Cut-off frequency, fo or fH = 2kHz

  Maximally Flat, i.e. Q=1/√2

> Justify any assumption you make.

> Draw circuit with all designed values.

> Draw the frequency response (Gain magnitude only)

Solutions

Expert Solution


Related Solutions

Design and build an active second order low pass filter with cut off frequency of 8kHz...
Design and build an active second order low pass filter with cut off frequency of 8kHz using opamp -Show circuit diagram -Show input voltage and frequency - Show all calculations and placement of indicator to measure output frequency to measure cut off
Butterworth filter a)Design a 5th order low pass Butterworth low-pass filter with a cut-off frequency of...
Butterworth filter a)Design a 5th order low pass Butterworth low-pass filter with a cut-off frequency of 1592 Hz and a dc gain of 3dB. Find and present the mathematical transfer function of the filter, showing all your steps. b) Write a Matlab code to plot the magnitude of this function with a linear scale in dB units on the ordinate, and a log scale of frequency on the abscissa. The plot range should be: ordinate- linear scale from -100dB to...
Using a general Op-Amp 741, design a first order and a second-order low-pass filter with cut...
Using a general Op-Amp 741, design a first order and a second-order low-pass filter with cut off frequent of 5kHz. Subject sinusoidal inputs with frequency from 1kHz to 10kHz and plot the frequency responses for both the filters and provide your opinion.
Q1: Design a 9th order low-pass filter with cut-off ?? /2 using the Hanning window. a)...
Q1: Design a 9th order low-pass filter with cut-off ?? /2 using the Hanning window. a) Plot its frequency response. b) Express the Input/ Output relation. c) let ??[??]{ 0    ??or ??=0,1,2…..,10 {1 ??or ??=11,12,…..30 Calculate ??=????. Plot and comment on the shape of y. Q2: Design a 9th order high-pass filter with cut-off ??/ 4 using the Hanning window. a) Plot the frequency response. b) Express the Input/ Output relation. c) let ??[??]={ 0    ??or ??=0,1,2…..,10 {1...
Design a 9th order low-pass filter with cut-off ??/ 2 using the Hanning window. a) Plot...
Design a 9th order low-pass filter with cut-off ??/ 2 using the Hanning window. a) Plot its frequency response. b) Express the Input/ Output relation. c) let ??[??] = { 0           ?????? ?? = 0,1,2…..,10 1    , ?????? ?? = 11,12,…..30        Calculate ?? = ?? ? ?. Plot and comment on the shape of y.
Design an active high pass filter with a high frequency gain of 5 and a cutoff...
Design an active high pass filter with a high frequency gain of 5 and a cutoff frequency of 2kHz. Use a 0.1 uF capacitor in your design.
Design a 3-pole Butterworth low-pass filter with a DC gain of 5 and a -3db frequency...
Design a 3-pole Butterworth low-pass filter with a DC gain of 5 and a -3db frequency of 550Hz. design should use capacitors of the following values: 0.01uf, 0.022uf, 0.033uf, 0.047uf, 0.056uf, 0.1uf, 0.22uf, and 1uf.
Design a first order, high pass active filter with a cutoff frequency of 20 krad/sec. Cascade...
Design a first order, high pass active filter with a cutoff frequency of 20 krad/sec. Cascade Four of this filter designed and find reasonable values for the resistor and capacitor. Obtain the transfer function and show a circuit schematic for your filter. Plot the Bode plot
Design a second-order band-pass filter using resistors and capacitors for a microphone for a hearing aid,...
Design a second-order band-pass filter using resistors and capacitors for a microphone for a hearing aid, which allows signals in the range of 1 to 16 kHz to pass through. For the component values that you chose, at what frequency is the transfer function at a maximum?
Design a 4 th order band-pass, maximally flat lumped-element filter with center frequency 3 GHz and...
Design a 4 th order band-pass, maximally flat lumped-element filter with center frequency 3 GHz and 10% bandwidth. The characteristic impedance is 50 Ω. FR4 substrate εr = 4.4, d = 1.6 mm, and tan δ = 0.02, with copper conductors 17 μm thick.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT