In: Statistics and Probability
Q1. Assume a normal distribution with a known variance. Calculate the Lower Confidence Level (LCL) and Upper Confidence Level (UCL) for each of the following: |
a. X-Bar = 50; n = 64; σ = 40; α = 0.05 |
LCL ==> |
UCL ==> |
b. X-Bar = 85; n = 225; σ2 = 400; α = 0.01 |
LCL ==> |
UCL ==> |
c. X-Bar = 510; n = 485; σ = 50; α = 0.10 |
LCL ==> |
UCL ==> |
Solution :
Given that,
a) Point estimate = sample mean = = 50
Population standard deviation = = 40
Sample size = n = 64
= 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z/2* ( /n)
= 1.96 * (40 / 64)
= 9.8
- E < < + E
50 - 9.8 < < 50 + 9.8
40.2 < < 59.8
(40.2 , 59.8)
LCL ==> 40.2
UCL ==> 59.8
b) Point estimate = sample mean = = 85
variance = σ2 = 400
Population standard deviation = = 20
Sample size = n = 225
= 0.01
/ 2 = 0.01 / 2 = 0.005
Z/2 = Z0.005 = 2.576
Margin of error = E = Z/2* ( /n)
= 2.576 * ( 20/ 225)
= 3.4
- E < < + E
85 - 3.4 < < 85 + 3.4
81.6 < < 88.4
(81.6 , 88.4)
LCL ==> 81.6
UCL ==> 88.4
c)Point estimate = sample mean = = 510
Population standard deviation = = 50
Sample size = n = 485
, = 0.10
/ 2 = 0.10 / 2 = 0.05
Z/2 = Z0.05 = 1.645
Margin of error = E = Z/2* ( /n)
= 1.645 * ( 50 / 485)
= 0.2
- E < < + E
510 - 0.2 < < 510 + 0.2
509.8 < < 510.2
(509.8 , 510.2)
LCL ==> 509.8
UCL ==>510.2