Question

In: Physics

As an admirer of Thomas Young, you perform a double-slit experiment in his honor. You set...

As an admirer of Thomas Young, you perform a double-slit experiment in his honor. You set your slits 1.15 mm apart and position your screen 3.67 m from the slits. Although Young had to struggle to achieve a monochromatic light beam of sufficient intensity, you simply turn on a laser with a wavelength of 641 nm . How far on the screen are the first bright fringe and the second dark fringe from the central bright fringe? Express your answers in millimeters.

Solutions

Expert Solution

In Young's double slit experiment,

Condition for bright fringes

Condition for dark fringes

Given that, Distance between the slits

Distance of screen from the grating

Wavelength of light

Distance from central bright fringe to first bright fringe is ,

For small angles

Hence

For first bright fringe ,

Distance from central bright fringe to first bright fringe is

Distance from central bright fringe to second dark fringe is ,

For small angles

Hence

For second dark fringe ,

Distance from central bright fringe to second dark fringe is


Related Solutions

Suppose we perform a double-slit experiment with a detector placed at a position of minimum intensity...
Suppose we perform a double-slit experiment with a detector placed at a position of minimum intensity (maximum destructive interference), off-center where the path lengths differ by half a wavelength. The light source is alternately turned on and off (or blocked and unblocked near the source) and the intensity over time is recorded. I interpret the uncertainty principle to mean that there will be a peak in intensity at the times when the switch is flipped (whether on-to-off or off-to-on). i.e.,...
In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm...
In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm is illuminated by light having a wavelength of 600 nm and the interference pattern observed on a screen 4.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a second order bright fringe on the screen?
Explain Young's double slit experiment
Explain Young's double slit experiment
Explain how Thomas Young's double slit diffraction experiment gives direct evidence that an electron is both...
Explain how Thomas Young's double slit diffraction experiment gives direct evidence that an electron is both a particle and a wave?
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an interference pattern on the screen at a distance L from the slits. What statement is true for the resulting interference pattern if the frequency of the light increases? OPTIONS: The distance between maxima stays the same.T he distance between maxima increases. The distance between maxima decreases. Not enough information given.
A physics professor wants to perform a lecture demonstration of Young's double-slit experiment for her class...
A physics professor wants to perform a lecture demonstration of Young's double-slit experiment for her class using the 633nm light from a He-Ne laser. Because the lecture hall is very large, the interference pattern will be projected on a wall that is 6.0m from the slits. For easy viewing by all students in the class, the professor wants the distance between the m=0 and m=1 maxima to be 30cm . What slit separation is required in order to produce the...
In a double-slit experiment, if the slit separation is increased by a factor of two, what...
In a double-slit experiment, if the slit separation is increased by a factor of two, what happens to the interference pattern shown on the screen? What happens if the wavelength is halved? What happens if the distance to the screen is double? Two small forward-facing speakers are 2.50 m apart. They are both emitting, in phase with each other, a sound of frequency 1100 Hz in a room where the speed of sound is 344 m/s. A woman is standing...
what is the importance of Young's double-slit experiment?
what is the importance of Young's double-slit experiment?
In Young's double-slit experiment, what happens to the spacing between the fringes if (a) the slit...
In Young's double-slit experiment, what happens to the spacing between the fringes if (a) the slit separation is increased? (b) the wavelength of the incident light is decreased? (c) if the distance between the slits and the viewing screen is increased?
IV. TESTING EXPERIMENT: YOUNG’S DOUBLE SLIT EXPERIMENT The goal of this experiment is to test the...
IV. TESTING EXPERIMENT: YOUNG’S DOUBLE SLIT EXPERIMENT The goal of this experiment is to test the relationships we just developed about the positions of the bright spots of an interference pattern. Available equipment: Laser pointer, plate with two closely-positioned narrow slits, whiteboard or white screen, meter stick, protractor. f) Design an experiment to test the relationship we just developed. Sketch the experimental set-up. g) Use the hypothesis to predict the outcome of the experiment. Show your work on your whiteboard....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT