Question

In: Advanced Math

Graph Theory: Let S be a set of three pairwise-nonadjacent edges in a 3-connected graph G....

Graph Theory: Let S be a set of three pairwise-nonadjacent edges in a 3-connected graph G. Show that there is a cycle in G containing all three edges of S unless S is an edge-cut of G

Solutions

Expert Solution

A graph that contains a path between every pair of vertices is connected. Every graph consists of one or more disjoint connected sub-graphs called the connected components. 3-connected graph means that each vertex is connected to two of it's adjacent vertices. An example is shown in image below:

Also, we say that a given graph contains a path (or cycle) of length n if it contains a sub-graph which is isomorphic to Cn , where Cn is is graph of length n. Shown below is and example of such isomorphic sub-graph:

It clearly shows that a cycle exists when all

Similarily for 3-connected graph, G with S as set of three pairwise-nonadjacent edges(AB, CD, EF) is shown in image.

1. and 2. are the isomorphic sub-graphs that are cyclic. But when and edge cut like AD or CE are taken, cycle is not formed.

Hence, proved.


Related Solutions

Prove a connected simple graph G with 16 vertices and 117 edges is not Eulerian.
Prove a connected simple graph G with 16 vertices and 117 edges is not Eulerian.
You are given a directed graph G(V,E) with n vertices and m edges. Let S be...
You are given a directed graph G(V,E) with n vertices and m edges. Let S be the subset of vertices in G that are able to reach some cycle in G. Design an O(n + m) time algorithm to compute the set S. You can assume that G is given to you in the adjacency-list representation.
Let k be an integer satisfying k ≥ 2. Let G be a connected graph with...
Let k be an integer satisfying k ≥ 2. Let G be a connected graph with no cycles and k vertices. Prove that G has at least 2 vertices of degree equal to 1.
Given a graph G = (V,E), the source-sink pair (s,t) and capacity of edges {C_e ≥...
Given a graph G = (V,E), the source-sink pair (s,t) and capacity of edges {C_e ≥ 0 | e ∈ E}, design a polynomial-time algorithm to find a set of edges S, such that for every edge e ∈ S, increasing C_e will lead to an increase of max-flow value between s and t. Show the correctness of your algorithm.
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let G be a group acting on a set S, and let H be a group...
Let G be a group acting on a set S, and let H be a group acting on a set T. The product group G × H acts on the disjoint union S ∪ T as follows. For all g ∈ G, h ∈ H, s ∈ S and t ∈ T, (g, h) · s = g · s, (g, h) · t = h · t. (a) Consider the groups G = C4, H = C5, each acting...
let G be a simple graph. show that the relation R on the set of vertices...
let G be a simple graph. show that the relation R on the set of vertices of G such that URV if and only if there is an edge associated with (u,v) is a symmetric irreflexive relation on G
TUTORIAL: GRAPH THEORY 1. What are series edges? 2. What is a series reduction? 3. Define...
TUTORIAL: GRAPH THEORY 1. What are series edges? 2. What is a series reduction? 3. Define homeomorphic graphs. 4. State Kuratowski’s theorem.
Let S = {a, b, c}. Draw a graph whose vertex set is P(S) and for...
Let S = {a, b, c}. Draw a graph whose vertex set is P(S) and for which the subsets A and B of S are adjacent if and only if A ⊂ B and |A| = |B| − 1. (a) How many vertices and edges does this graph have? (b) Can you name this graph? (c) Is this graph connected? (d) Does it have a perfect matching? If yes, draw a sketch of the matching. (e) Does it have a...
Draw a connected, simple graph with 6 vertices and 12 edges. Verify the Handshaking Lemma for...
Draw a connected, simple graph with 6 vertices and 12 edges. Verify the Handshaking Lemma for your graph.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT