Solution : Draw the region and evaluate the following integral
(a) ∫01∫12(y+2x)dydx=∫01(2x+12y2)|12dx=∫01(2x+32)dx=(x2+32x)|01=52">∫10∫21(y+2x)dydx=∫10(2x+12y2)∣∣21dx=∫10(2x+32)dx=(x2+32x)∣∣10=52∫01∫12(y+2x)dydx=∫01(2x+12y2)|12dx=∫01(2x+32)dx=(x2+32x)|01=52
Therefore, ∫01∫12(y+2x)dydx=52◼">∫10∫21(y+2x)dydx=52■∫01∫12(y+2x)dydx=52◼
(b) ∫01∫x2xxydydx=∫0112xy2|x2xdx=∫01(12x3−12x5)dx=(18x4−112x6)|01=124">∫10∫xx2xydydx=∫1012xy2∣∣xx2dx=∫10(12x3−12x5)dx=(18x4−112x6)∣∣10=124∫01∫x2xxydydx=∫0112xy2|x2xdx=∫01(12x3−12x5)dx=(18x4−112x6)|01=124
Therefore, ∫01∫x2xxydydx=124◼">∫10∫xx2xydydx=124■∫01∫x2xxydydx=124◼
(c) ∫0π∫yπsinxxdxdy⇒∫0π∫0xsinxxdydx=∫0πsinxdx=(−cosx)|0π=2">∫π0∫πysinxxdxdy⇒∫π0∫x0sinxxdydx=∫π0sinxdx=(−cosx)∣∣π0=2∫0π∫yπsinxxdxdy⇒∫0π∫0xsinxxdydx=∫0πsinxdx=(−cosx)|0π=2
Therefore, ∫0π∫yπsinxxdxdy=2◼">∫π0∫πysinxxdxdy=2■