Let X be a uniform random variable with pdf f(x) = λe−λx for x
> 0, and cumulative distribution function F(x).
(a) Show that F(x) = 1−e −λx for x > 0, and show that this
function satisfies the requirements of a cdf (state what these are,
and show that they are met). [4 marks]
(b) Draw f(x) and F(x) in separate graphs. Define, and identify
F(x) in the graph of f(x), and vice versa. [Hint: write the
mathematical relationships,...