In: Math
4. What is the empirical probability of a loss? [Topic 2]
Date OLIM Int.
15/6/2014 2.36
22/6/2014 2.46
29/6/2014 2.52
6/7/2014 2.46
13/7/2014 2.44
20/7/2014 2.54
27/7/2014 2.46
3/8/2014 2.42
10/8/2014 2.54
17/8/2014 2.53
24/8/2014 2.65
31/8/2014 2.64
7/9/2014 2.56
14/9/2014 2.54
21/9/2014 2.4
28/9/2014 2.3
5/10/2014 2.2
12/10/2014 2.08
19/10/2014 2.06
26/10/2014 2.13
2/11/2014 2.11
9/11/2014 2.25
16/11/2014 2.24
23/11/2014 2.16
30/11/2014 2.09
7/12/2014 2.04
14/12/2014 2.11
21/12/2014 2.09
28/12/2014 2.04
4/1/2015 2.01
11/1/2015 1.96
18/1/2015 2
25/1/2015 1.975
1/2/2015 2.03
8/2/2015 2
15/2/2015 2
22/2/2015 2
1/3/2015 2
8/3/2015 2.01
15/3/2015 1.98
22/3/2015 1.99
29/3/2015 2
5/4/2015 2.03
12/4/2015 2.05
19/4/2015 2
26/4/2015 2.02
3/5/2015 2
10/5/2015 1.98
17/5/2015 1.985
24/5/2015 1.985
31/5/2015 1.88
7/6/2015 1.885
14/6/2015 1.865
21/6/2015 1.865
28/6/2015 1.885
5/7/2015 1.825
12/7/2015 1.79
19/7/2015 1.78
26/7/2015 1.84
2/8/2015 1.8
9/8/2015 1.8
16/8/2015 1.755
23/8/2015 2.07
30/8/2015 1.98
6/9/2015 1.975
13/9/2015 2.04
20/9/2015 1.995
27/9/2015 2
4/10/2015 2
11/10/2015 2
18/10/2015 1.98
25/10/2015 2
1/11/2015 1.99
8/11/2015 1.915
15/11/2015 1.845
22/11/2015 1.82
29/11/2015 1.805
6/12/2015 1.77
13/12/2015 1.81
20/12/2015 1.835
27/12/2015 1.82
3/1/2016 1.695
10/1/2016 1.665
17/1/2016 1.63
24/1/2016 1.62
31/1/2016 1.61
7/2/2016 1.58
14/2/2016 1.585
21/2/2016 1.61
28/2/2016 1.755
6/3/2016 1.74
13/3/2016 1.745
20/3/2016 1.74
27/3/2016 1.69
3/4/2016 1.655
10/4/2016 1.72
17/4/2016 1.725
24/4/2016 1.65
1/5/2016 1.595
8/5/2016 1.6
15/5/2016 1.705
22/5/2016 1.815
29/5/2016 1.835
5/6/2016 1.86
12/6/2016 1.815
19/6/2016 1.855
26/6/2016 1.88
3/7/2016 1.91
10/7/2016 1.885
17/7/2016 1.88
24/7/2016 1.91
31/7/2016 1.83
7/8/2016 1.85
14/8/2016 1.96
21/8/2016 2.06
28/8/2016 2.07
4/9/2016 2.09
11/9/2016 2.03
18/9/2016 2.04
25/9/2016 2.06
2/10/2016 2.05
9/10/2016 2.07
16/10/2016 2.06
23/10/2016 2.1
30/10/2016 2.08
6/11/2016 2.1
13/11/2016 1.95
20/11/2016 1.96
27/11/2016 2.02
4/12/2016 2.07
11/12/2016 2.13
18/12/2016 2
25/12/2016 1.97
1/1/2017 2
8/1/2017 2.06
15/1/2017 1.995
22/1/2017 2
29/1/2017 2.01
5/2/2017 2.02
12/2/2017 2.1
19/2/2017 2.06
26/2/2017 2
5/3/2017 1.975
12/3/2017 1.93
19/3/2017 1.86
26/3/2017 1.92
2/4/2017 1.955
9/4/2017 1.91
16/4/2017 1.91
23/4/2017 1.91
30/4/2017 1.9
7/5/2017 1.96
14/5/2017 1.995
21/5/2017 2.07
28/5/2017 2.02
4/6/2017 2.03
11/6/2017 2
18/6/2017 1.96
25/6/2017 1.95
2/7/2017 1.915
9/7/2017 1.94
16/7/2017 1.945
23/7/2017 1.93
30/7/2017 1.96
6/8/2017 1.95
13/8/2017 2.02
20/8/2017 2.1
27/8/2017 2.06
3/9/2017 2.02
10/9/2017 2.01
17/9/2017 2.01
24/9/2017 2.02
1/10/2017 2.14
8/10/2017 2.22
15/10/2017 2.29
22/10/2017 2.35
29/10/2017 2.36
5/11/2017 2.33
12/11/2017 2.19
19/11/2017 2.2
26/11/2017 2.25
3/12/2017 2.19
10/12/2017 2.16
17/12/2017 2.07
24/12/2017 2.03
31/12/2017 2.04
7/1/2018 2.09
14/1/2018 2.11
21/1/2018 2.19
28/1/2018 2.22
4/2/2018 2.08
11/2/2018 2.17
18/2/2018 2.26
25/2/2018 2.23
4/3/2018 2.4
11/3/2018 2.34
18/3/2018 2.37
25/3/2018 2.34
1/4/2018 2.34
8/4/2018 2.35
15/4/2018 2.29
22/4/2018 2.28
29/4/2018 2.18
6/5/2018 2.3
13/5/2018 2.29
20/5/2018 2.28
27/5/2018 2.19
3/6/2018 2.21
10/6/2018 2.17
OLIM | Frequency | Probability |
2.36 | 2 | 0.00956938 |
2.46 | 3 | 0.01435407 |
2.52 | 1 | 0.00478469 |
2.44 | 1 | 0.00478469 |
2.54 | 3 | 0.01435407 |
2.42 | 1 | 0.00478469 |
2.53 | 1 | 0.00478469 |
2.65 | 1 | 0.00478469 |
2.64 | 1 | 0.00478469 |
2.56 | 1 | 0.00478469 |
2.4 | 2 | 0.00956938 |
2.3 | 2 | 0.00956938 |
2.2 | 2 | 0.00956938 |
2.08 | 3 | 0.01435407 |
2.06 | 7 | 0.03349282 |
2.13 | 2 | 0.00956938 |
2.11 | 3 | 0.01435407 |
2.25 | 2 | 0.00956938 |
2.24 | 1 | 0.00478469 |
2.16 | 2 | 0.00956938 |
2.09 | 4 | 0.01913876 |
2.04 | 5 | 0.02392344 |
2.01 | 5 | 0.02392344 |
1.96 | 6 | 0.02870813 |
2 | 17 | 0.08133971 |
1.975 | 3 | 0.01435407 |
2.03 | 5 | 0.02392344 |
1.98 | 4 | 0.01913876 |
1.99 | 2 | 0.00956938 |
2.05 | 2 | 0.00956938 |
2.02 | 7 | 0.03349282 |
1.985 | 2 | 0.00956938 |
1.88 | 3 | 0.01435407 |
1.885 | 3 | 0.01435407 |
1.865 | 2 | 0.00956938 |
1.825 | 1 | 0.00478469 |
1.79 | 1 | 0.00478469 |
1.78 | 1 | 0.00478469 |
1.84 | 1 | 0.00478469 |
1.8 | 2 | 0.00956938 |
1.755 | 2 | 0.00956938 |
2.07 | 6 | 0.02870813 |
1.995 | 3 | 0.01435407 |
1.915 | 2 | 0.00956938 |
1.845 | 1 | 0.00478469 |
1.82 | 2 | 0.00956938 |
1.805 | 1 | 0.00478469 |
1.77 | 1 | 0.00478469 |
1.81 | 1 | 0.00478469 |
1.835 | 2 | 0.00956938 |
1.695 | 1 | 0.00478469 |
1.665 | 1 | 0.00478469 |
1.63 | 1 | 0.00478469 |
1.62 | 1 | 0.00478469 |
1.61 | 2 | 0.00956938 |
1.58 | 1 | 0.00478469 |
1.585 | 1 | 0.00478469 |
1.74 | 2 | 0.00956938 |
1.745 | 1 | 0.00478469 |
1.69 | 1 | 0.00478469 |
1.655 | 1 | 0.00478469 |
1.72 | 1 | 0.00478469 |
1.725 | 1 | 0.00478469 |
1.65 | 1 | 0.00478469 |
1.595 | 1 | 0.00478469 |
1.6 | 1 | 0.00478469 |
1.705 | 1 | 0.00478469 |
1.815 | 2 | 0.00956938 |
1.86 | 2 | 0.00956938 |
1.855 | 1 | 0.00478469 |
1.91 | 5 | 0.02392344 |
1.83 | 1 | 0.00478469 |
1.85 | 1 | 0.00478469 |
2.1 | 4 | 0.01913876 |
1.95 | 3 | 0.01435407 |
1.97 | 1 | 0.00478469 |
1.93 | 2 | 0.00956938 |
1.92 | 1 | 0.00478469 |
1.955 | 1 | 0.00478469 |
1.9 | 1 | 0.00478469 |
1.94 | 1 | 0.00478469 |
1.945 | 1 | 0.00478469 |
2.14 | 1 | 0.00478469 |
2.22 | 2 | 0.00956938 |
2.29 | 3 | 0.01435407 |
2.35 | 2 | 0.00956938 |
2.33 | 1 | 0.00478469 |
2.19 | 4 | 0.01913876 |
2.17 | 2 | 0.00956938 |
2.26 | 1 | 0.00478469 |
2.23 | 1 | 0.00478469 |
2.34 | 3 | 0.01435407 |
2.37 | 1 | 0.00478469 |
2.28 | 2 | 0.00956938 |
2.18 | 1 | 0.00478469 |
2.21 | 1 | 0.00478469 |
Sum | 209 | 1 |