Question

In: Math

4.            What is the empirical probability of a loss? [Topic 2] Date      OLIM Int. 15/6/2014          2.36...

4.            What is the empirical probability of a loss? [Topic 2]

Date      OLIM Int.

15/6/2014          2.36

22/6/2014          2.46

29/6/2014          2.52

6/7/2014             2.46

13/7/2014          2.44

20/7/2014          2.54

27/7/2014          2.46

3/8/2014             2.42

10/8/2014          2.54

17/8/2014          2.53

24/8/2014          2.65

31/8/2014          2.64

7/9/2014             2.56

14/9/2014          2.54

21/9/2014          2.4

28/9/2014          2.3

5/10/2014          2.2

12/10/2014        2.08

19/10/2014        2.06

26/10/2014        2.13

2/11/2014          2.11

9/11/2014          2.25

16/11/2014        2.24

23/11/2014        2.16

30/11/2014        2.09

7/12/2014          2.04

14/12/2014        2.11

21/12/2014        2.09

28/12/2014        2.04

4/1/2015             2.01

11/1/2015          1.96

18/1/2015          2

25/1/2015          1.975

1/2/2015             2.03

8/2/2015             2

15/2/2015          2

22/2/2015          2

1/3/2015                     2

8/3/2015                     2.01

15/3/2015          1.98

22/3/2015          1.99

29/3/2015          2

5/4/2015                     2.03

12/4/2015          2.05

19/4/2015          2

26/4/2015          2.02

3/5/2015             2

10/5/2015          1.98

17/5/2015          1.985

24/5/2015          1.985

31/5/2015          1.88

7/6/2015                      1.885

14/6/2015          1.865

21/6/2015          1.865

28/6/2015          1.885

5/7/2015             1.825

12/7/2015          1.79

19/7/2015          1.78

26/7/2015          1.84

2/8/2015             1.8

9/8/2015             1.8

16/8/2015          1.755

23/8/2015          2.07

30/8/2015          1.98

6/9/2015             1.975

13/9/2015          2.04

20/9/2015          1.995

27/9/2015          2

4/10/2015          2

11/10/2015        2

18/10/2015        1.98

25/10/2015        2

1/11/2015          1.99

8/11/2015          1.915

15/11/2015        1.845

22/11/2015        1.82

29/11/2015        1.805

6/12/2015          1.77

13/12/2015        1.81

20/12/2015        1.835

27/12/2015        1.82

3/1/2016             1.695

10/1/2016          1.665

17/1/2016          1.63

24/1/2016          1.62

31/1/2016          1.61

7/2/2016             1.58

14/2/2016          1.585

21/2/2016          1.61

28/2/2016          1.755

6/3/2016                     1.74

13/3/2016          1.745

20/3/2016          1.74

27/3/2016          1.69

3/4/2016             1.655

10/4/2016          1.72

17/4/2016          1.725

24/4/2016          1.65

1/5/2016             1.595

8/5/2016             1.6

15/5/2016          1.705

22/5/2016          1.815

29/5/2016          1.835

5/6/2016                       1.86

12/6/2016          1.815

19/6/2016          1.855

26/6/2016          1.88

3/7/2016             1.91

10/7/2016          1.885

17/7/2016          1.88

24/7/2016          1.91

31/7/2016          1.83

7/8/2016             1.85

14/8/2016          1.96

21/8/2016          2.06

28/8/2016          2.07

4/9/2016             2.09

11/9/2016          2.03

18/9/2016          2.04

25/9/2016          2.06

2/10/2016          2.05

9/10/2016          2.07

16/10/2016        2.06

23/10/2016        2.1

30/10/2016        2.08

6/11/2016          2.1

13/11/2016        1.95

20/11/2016        1.96

27/11/2016        2.02

4/12/2016          2.07

11/12/2016        2.13

18/12/2016        2

25/12/2016        1.97

1/1/2017             2

8/1/2017             2.06

15/1/2017          1.995

22/1/2017          2

29/1/2017          2.01

5/2/2017             2.02

12/2/2017          2.1

19/2/2017          2.06

26/2/2017          2

5/3/2017             1.975

12/3/2017          1.93

19/3/2017          1.86

26/3/2017          1.92

2/4/2017             1.955

9/4/2017             1.91

16/4/2017          1.91

23/4/2017          1.91

30/4/2017          1.9

7/5/2017             1.96

14/5/2017          1.995

21/5/2017          2.07

28/5/2017          2.02

4/6/2017             2.03

11/6/2017          2

18/6/2017          1.96

25/6/2017          1.95

2/7/2017             1.915

9/7/2017             1.94

16/7/2017          1.945

23/7/2017          1.93

30/7/2017          1.96

6/8/2017             1.95

13/8/2017          2.02

20/8/2017          2.1

27/8/2017          2.06

3/9/2017             2.02

10/9/2017          2.01

17/9/2017          2.01

24/9/2017          2.02

1/10/2017          2.14

8/10/2017          2.22

15/10/2017        2.29

22/10/2017        2.35

29/10/2017        2.36

5/11/2017          2.33

12/11/2017        2.19

19/11/2017        2.2

26/11/2017        2.25

3/12/2017          2.19

10/12/2017        2.16

17/12/2017        2.07

24/12/2017        2.03

31/12/2017        2.04

7/1/2018             2.09

14/1/2018          2.11

21/1/2018          2.19

28/1/2018          2.22

4/2/2018             2.08

11/2/2018          2.17

18/2/2018          2.26

25/2/2018          2.23

4/3/2018             2.4

11/3/2018          2.34

18/3/2018          2.37

25/3/2018          2.34

1/4/2018             2.34

8/4/2018             2.35

15/4/2018          2.29

22/4/2018          2.28

29/4/2018          2.18

6/5/2018             2.3

13/5/2018          2.29

20/5/2018          2.28

27/5/2018          2.19

3/6/2018             2.21

10/6/2018          2.17

Solutions

Expert Solution

OLIM Frequency Probability
2.36 2 0.00956938
2.46 3 0.01435407
2.52 1 0.00478469
2.44 1 0.00478469
2.54 3 0.01435407
2.42 1 0.00478469
2.53 1 0.00478469
2.65 1 0.00478469
2.64 1 0.00478469
2.56 1 0.00478469
2.4 2 0.00956938
2.3 2 0.00956938
2.2 2 0.00956938
2.08 3 0.01435407
2.06 7 0.03349282
2.13 2 0.00956938
2.11 3 0.01435407
2.25 2 0.00956938
2.24 1 0.00478469
2.16 2 0.00956938
2.09 4 0.01913876
2.04 5 0.02392344
2.01 5 0.02392344
1.96 6 0.02870813
2 17 0.08133971
1.975 3 0.01435407
2.03 5 0.02392344
1.98 4 0.01913876
1.99 2 0.00956938
2.05 2 0.00956938
2.02 7 0.03349282
1.985 2 0.00956938
1.88 3 0.01435407
1.885 3 0.01435407
1.865 2 0.00956938
1.825 1 0.00478469
1.79 1 0.00478469
1.78 1 0.00478469
1.84 1 0.00478469
1.8 2 0.00956938
1.755 2 0.00956938
2.07 6 0.02870813
1.995 3 0.01435407
1.915 2 0.00956938
1.845 1 0.00478469
1.82 2 0.00956938
1.805 1 0.00478469
1.77 1 0.00478469
1.81 1 0.00478469
1.835 2 0.00956938
1.695 1 0.00478469
1.665 1 0.00478469
1.63 1 0.00478469
1.62 1 0.00478469
1.61 2 0.00956938
1.58 1 0.00478469
1.585 1 0.00478469
1.74 2 0.00956938
1.745 1 0.00478469
1.69 1 0.00478469
1.655 1 0.00478469
1.72 1 0.00478469
1.725 1 0.00478469
1.65 1 0.00478469
1.595 1 0.00478469
1.6 1 0.00478469
1.705 1 0.00478469
1.815 2 0.00956938
1.86 2 0.00956938
1.855 1 0.00478469
1.91 5 0.02392344
1.83 1 0.00478469
1.85 1 0.00478469
2.1 4 0.01913876
1.95 3 0.01435407
1.97 1 0.00478469
1.93 2 0.00956938
1.92 1 0.00478469
1.955 1 0.00478469
1.9 1 0.00478469
1.94 1 0.00478469
1.945 1 0.00478469
2.14 1 0.00478469
2.22 2 0.00956938
2.29 3 0.01435407
2.35 2 0.00956938
2.33 1 0.00478469
2.19 4 0.01913876
2.17 2 0.00956938
2.26 1 0.00478469
2.23 1 0.00478469
2.34 3 0.01435407
2.37 1 0.00478469
2.28 2 0.00956938
2.18 1 0.00478469
2.21 1 0.00478469
Sum 209 1

Related Solutions

Given the following int variables which represent a date, int day; // 0-6 for Sunday-Saturday int...
Given the following int variables which represent a date, int day; // 0-6 for Sunday-Saturday int month; // 1-12 for January-December int date; // 1-31 int year; // like 2020 Define the function void tomorrow(int& day, int& month, int& date, int& year); which updates the variables to represent the next day. Test in main().
QUESTION 5 What is printed? int[] aArray = {1, 2, 3, 4}; int[] bArray = {5,...
QUESTION 5 What is printed? int[] aArray = {1, 2, 3, 4}; int[] bArray = {5, 6, 7, 8}; bArray = aArray; System.out.print(bArray[2]); 1 points    QUESTION 6 What is printed? public static void main(String[] args) { int[] aArray = { 1, 2, 3, 4 }; System.out.print(aArray[2]); int i = aMeth(aArray); System.out.print(i + "" + aArray[2]); } public static int aMeth(int[] iArray) { for (int i = 0; i < iArray.length; i++) { iArray[i]++; } int[] bArray = { 5,...
6 C++ Questions: 19. Assuming an int is size 4 bytes, what is the size in...
6 C++ Questions: 19. Assuming an int is size 4 bytes, what is the size in memory of the below array: int cards[10] = {7, 4, 7, 5, 7}; 20. In the array from question 19, what is the value of the below elements: cards[1]; cards[8]; Assume you have an array with 128 integers which is sorted from lowest to highest. 21a. You are searching for a value which is contained in the array using the binary search algorithm. What...
(1) Describe the difference between empirical and theoretical probability. (2) Find the theoritical probability of tossing...
(1) Describe the difference between empirical and theoretical probability. (2) Find the theoritical probability of tossing three coins and getting 2 heads, 1 tail. (3) Toss three coins at once 50 times and record the out come of getting 2 heads, 1 tail. (4)) Based on your observations, give the empirical probability of each result.
15. a. (1pt) The probability of rolling a 6 (a normal numbered cube) is ______________ 15....
15. a. (1pt) The probability of rolling a 6 (a normal numbered cube) is ______________ 15. b. (2pts) Assume that you are going to do 10 rolls of this numbered cubes and you are focused on the number of times the side with the six comes up. What is the probability of having exactly 8 sixes appear? 15. c. (2 pts) What is the mean and the standard deviation? 15 d. (3pts) Using the words mean and standard deviation, explain...
This question relates to Topic 4 and LO’s 1, 2, 3, 5, 6 a. In terms...
This question relates to Topic 4 and LO’s 1, 2, 3, 5, 6 a. In terms of share investment define what beta (β) represents. [2.5 marks] b. According to au.finance.yahoo.com, APT has a beta of 1.88. What does this mean? [2.5 marks] c. In terms of riskiness how would you compare APT’s beta to the market? [2.5 marks] d. Calculate the expected returns for APT using the Capital Asset Pricing Model (CAPM) and the following yields. [5 marks] • The...
) Find the following integral by using cylindrical coordinates \int _0^4\int _{-\sqrt{16-y^2}}^{\sqrt{16-y^2}}\int _{-\sqrt{16-x^2-y^2}}^0\left(xy^2+6\right)\:dxdydz
) Find the following integral by using cylindrical coordinates \int _0^4\int _{-\sqrt{16-y^2}}^{\sqrt{16-y^2}}\int _{-\sqrt{16-x^2-y^2}}^0\left(xy^2+6\right)\:dxdydz
Suppose A is (10, 2, 5, 9, 1, 8, 2, 4). Consider the function: int BBOX(int...
Suppose A is (10, 2, 5, 9, 1, 8, 2, 4). Consider the function: int BBOX(int n, int k)             if (n <= 0) return 0;             else if (A[n] < k) return (1+ 2*BBOX(n-1,k+1));             else return BBOX(n-1,k-2);             Find BBOX(8, 5)
What is the probability of finding the particle in the region a/4 < x < a/2?...
What is the probability of finding the particle in the region a/4 < x < a/2? show your work.
What is probability? Describe classical, empirical, and subjective probability, and provide "real-world" examples of each. How...
What is probability? Describe classical, empirical, and subjective probability, and provide "real-world" examples of each. How can each of these types of probability apply to the business world? Do you think any one type is more useful in business than the others? Why or why not?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT