Question

In: Math

In the population, the average IQ is 100 with a standard deviation of 15. A team...

In the population, the average IQ is 100 with a standard deviation of 15. A team of scientists wants to test a new medication to see if it has either a positive or negative effect on intelligence, or no effect at all. A sample of 30 participants who have taken the medication has a mean of 105. It is assumed that the data are drawn from a normally distributed population. Did the medication affect intelligence, using α = 0.05?

(a) State hypotheses appropriate to the research question.

(b) Describe what test would you use and state the reasons for your choice.

(c) Draw a conclusion in the context of the problem using the p-value.

(d) Construct a 95% CI for µ. Conclude in the context of the problem.

(e) Compute the power if the true population mean is 110.

Solutions

Expert Solution

b) One should use a one sample z test.

a) Let denotes the average IQ after new medication.

d)


Related Solutions

In the population, the average IQ is 100 with a standard deviation of 15. A team...
In the population, the average IQ is 100 with a standard deviation of 15. A team of scientists wants to test a new medication to see if it has either a positive or negative effect on intelligence, or no effect at all. A sample of 30 participants who have taken the medication has a mean of 105. It is assumed that the data are drawn from a normally distributed population. Did the medication affect intelligence, using α= 0.05? a. State...
The mean population IQ is 100 with a standard deviation of 15. A principal at a...
The mean population IQ is 100 with a standard deviation of 15. A principal at a certain school claims that the mean IQ score of their students in his school is greater that 100. A random sample of 30 students IQ scores have a mean score of 112. Significance level α = 0.01 (a) State the null and alternate hypotheses (b) Calculate the z statistic value 6 (c) Determine the p value. Sketch the graph (d) Make a decision. Reject...
Assume the population mean IQ is 100 with a standard deviation of 15. A sample of...
Assume the population mean IQ is 100 with a standard deviation of 15. A sample of 25 students recently took an IQ test in which their average score was 108. If another sample of 25 students was selected, what is the probability that that sample would have a mean greater than 108?
IQ is normally distributed with a mean of 100 and a standard deviation of 15. a)...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. a) Suppose one individual is randomly chosen. Find the probability that this person has an IQ greater than 95. Write your answer in percent form. Round to the nearest tenth of a percent. P (IQ greater than 95) = % b) Suppose one individual is randomly chosen. Find the probability that this person has an IQ less than 125. Write your answer in percent form....
IQ is normally distributed with a mean of 100 and a standard deviation of 15. a)...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. a) Suppose one individual is randomly chosen. Find the probability that this person has an IQ greater than 95. Write your answer in percent form. Round to the nearest tenth of a percent. P P (IQ greater than 95) = % b) Suppose one individual is randomly chosen. Find the probability that this person has an IQ less than 125. Write your answer in percent...
. IQ is normally distributed with a mean of 100 and a standard deviation of 15....
. IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose an individual is randomly chosen. a) (3pt) Find the probability that the person has an IQ greater than 125. b) (4pt) Find the probability that the person has an IQ score between 105 and 118. c) (4pt) What is the IQ score of a person whose percentile rank is at the 75th percentile, ?75? d) (3pt) Use the information from part (c) to...
IQ scores in a large population have a normal distribution with mean=100 and standard deviation=15. What...
IQ scores in a large population have a normal distribution with mean=100 and standard deviation=15. What is the probability the sample mean for n=2 will be 121 or higher? (I understand the z score equals 1.98,could you please explain to me how the final answer is equal to 0.0239?thanks.) Also, why do we use 1 and subtract 0.9761 to get 0.0239? Where does 0.9761 come from?
In the North American population, the average IQ is 100. A team of scientists wants to...
In the North American population, the average IQ is 100. A team of scientists wants to test a new medication to see if it has either a positive or negative effect on intelligence or no effect at all. A sample of 39 participants who have taken the medication has been investigated and their IQ after treatment is noted as following: 95           90           100         110         108         105         98           105         120         115         99           100         90    118         112         110         120         120         95           100         90           110         100         105         100         90    105         103         108         112         114         100         88           95           105         103         105         107         98                 1-Does the medication influence the North American population IQ? Explain and justify your answer....
IQ scores are normally distributed with a mean of 100 and a standard deviation of 15....
IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. A) If one person are randomly selected, find the probability the IQ score is greater than 112. B)If one person are randomly selected, find the probability the IQ score is less than 95. C)If one person are randomly selected, find the probability the IQ score is between 97 and 110. D) If 16 people are randomly selected, find the probability the IQ score will...
IQ scores are normally distributed with a mean of 100 and a standard deviation of 15....
IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. a) Find the proportion of the population that has an IQ higher than 94 b) Find the proportion of the population that has an IQ between 82 and 88 c) Find the IQ score that seperates the highest scoring 67% from the rest of the population Critical Values Z0.05= 1.645 Z0.025=1.96 Z0.01=2.325 Z0.005=2.575
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT