Question

In: Advanced Math

Solve the following initial value problem using the undetermined coefficient technique: y'' - 4y = sin(x),...

Solve the following initial value problem using the undetermined coefficient technique:

y'' - 4y = sin(x), y(0) = 4, y'(0) = 3

Solutions

Expert Solution


Related Solutions

Solve the given initial value problem by undetermined coefficients (annihilator approach). y'' − 4y' + 4y...
Solve the given initial value problem by undetermined coefficients (annihilator approach). y'' − 4y' + 4y = e^4x + xe^−2x y(0) = 1 y'(0) = −1
Initial Value Problem. Use Indeterminate Coefficients method for this problem: y'' - 4y = sin(x) where:...
Initial Value Problem. Use Indeterminate Coefficients method for this problem: y'' - 4y = sin(x) where: y(0) = 4 and y'(0) = 8
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  ...
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  =  0, y′′(0)  =  0, y′′′(0)  =  0.
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0)...
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0) = 0. Solve without the Laplace Transform, first, and then with the Laplace Transform.
Solve the initial value problem below using the method of Laplace transforms. y'' - 4y' +...
Solve the initial value problem below using the method of Laplace transforms. y'' - 4y' + 8y = 5e^t y(0) = 1 y'(0) = 3
Solve the given differential equation, by the undetermined coefficient method: y"-4y'+4y=2x-sen2x (Principle of superposition)
Solve the given differential equation, by the undetermined coefficient method: y"-4y'+4y=2x-sen2x (Principle of superposition)
solve using method of undetermined coefficients. y''-5y'-4y=cos2x
solve using method of undetermined coefficients. y''-5y'-4y=cos2x
Solve using judicious guessing. y''+4y = t*sin(2t)
Solve using judicious guessing. y''+4y = t*sin(2t)
A) Solve the initial value problem: 8x−4y√(x^2+1) * dy/dx=0 y(0)=−8 y(x)= B)  Find the function y=y(x) (for...
A) Solve the initial value problem: 8x−4y√(x^2+1) * dy/dx=0 y(0)=−8 y(x)= B)  Find the function y=y(x) (for x>0 ) which satisfies the separable differential equation dy/dx=(10+16x)/xy^2 ; x>0 with the initial condition y(1)=2 y= C) Find the solution to the differential equation dy/dt=0.2(y−150) if y=30 when t=0 y=
Solve the following initial value: y ''+ 4y = 2 cos 2t, y(0) = −2 and...
Solve the following initial value: y ''+ 4y = 2 cos 2t, y(0) = −2 and y 0 (0) = 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT