Question

In: Physics

3. Two ice skaters collide on the ice. A 39.6-kg skater moving South at 6.21 m/s...

3. Two ice skaters collide on the ice. A 39.6-kg skater moving South at 6.21 m/s collides with a 52.1-kg skater

moving East at 4.33 m/s. The two skaters entangle and move together across the ice. Determine the magnitude

and direction of their post-collision velocity (answer: 3.64 m/s at 42.5 degrees)

Please provide a detailed diagram

Solutions

Expert Solution

Answer:

The magnitude and direction of post collision velocity of the two skaters can be determined using conservation of momentum as follows:


Related Solutions

Two ice skaters, with masses of 50.0 kg and 65.0 kg , are at the center...
Two ice skaters, with masses of 50.0 kg and 65.0 kg , are at the center of a 30.0 m -diameter circular rink. The skaters push off against each other and glide to opposite edges of the rink. If the heavier skater reaches the edge in 10.0 s , how long does the lighter skater take to reach the edge?
A 1410-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at...
A 1410-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at 15.0 m/s, and the two cars connect together. a) What is the magnitude of the velocity of the cars right after the collision? (m/s) b) What is the direction of the cars right after the collision? Enter the angle in degrees where positive indicates north of east and negative indicates south of east. (°) c) How much kinetic energy was converted to another form...
Two ice skaters are gliding together along the ice, both moving at the same, constant velocity....
Two ice skaters are gliding together along the ice, both moving at the same, constant velocity. They are sliding without exerting a force meaning you can neglect any friction. The first skater (the one in the back) as a mass M 1. The second skater (the one in front) has a mass M 2. As they are sliding with an initial speed v i, the first skater pushes the second skater directly forward in the direction they are moving. After...
Two ice skaters, Daniel (mass = 65.0 kg) and Rebecca (mass = 45.0 kg) are practicing...
Two ice skaters, Daniel (mass = 65.0 kg) and Rebecca (mass = 45.0 kg) are practicing on the ice. Daniel stops to tie his lace, and while at rest he is struck by Rebecca, who is moving 12.0 m/s before she collides with him. After the collision, Rebecca is moving forward at 8.50 m/s at a 53 degree angle with respect to her initial direction. What is the velocity vector (magnitude and direction, or x- and y-components) of Daniel after...
Two ice skaters, Daniel (mass 65.0 kg ) and Rebecca (mass 45.0 kg ), are practicing....
Two ice skaters, Daniel (mass 65.0 kg ) and Rebecca (mass 45.0 kg ), are practicing. Daniel stops to tie his shoelace and, while at rest, is struck by Rebecca, who is moving at 14.0 m/s before she collides with him. After the collision, Rebecca has a velocity of magnitude 8.00 m/s at an angle of 53.1 ∘ from her initial direction. Both skaters move on the frictionless, horizontal surface of the rink. Part A What is the magnitude of...
A hockey puck is given an initial velocity of 39.6 m/s along the ice. Find the...
A hockey puck is given an initial velocity of 39.6 m/s along the ice. Find the speed of the puck 1.08 s later if the coefficient of kinetic friction between puck and ice is 0.618. (HINT: The result is independent of the mass of the puck.)
A 0.300-kg ice puck, moving east with a speed of 5.84 m/s , has a head-on...
A 0.300-kg ice puck, moving east with a speed of 5.84 m/s , has a head-on collision with a 0.990-kg puck initially at rest. Assume that the collision is perfectly elastic. A) What is the speed of the 0.300-kg puck after the collision? Express your answer to three significant figures and include the appropriate units. B) What is the direction of the velocity of the 0.300-kg puck after the collision? East or West? C) What is the speed of the...
A 0.350-kg ice puck, moving east with a speed of 5.24 m/s, has a head-on collision...
A 0.350-kg ice puck, moving east with a speed of 5.24 m/s, has a head-on collision with a 0.900-kg puck initially at rest. Assume that the collision is perfectly elastic. (a) What is the speed of the 0.350-kg puck after the collision? (b) What is the direction of the velocity of the 0.350-kg puck after the collision? (c) What is the speed of the 0.900-kg puck after the collision? (d) What is the direction of the velocity of the 0.900-kg...
A 45 kg skater rounds a 4.5 m -radius turn at 6.6 m/s .What is the...
A 45 kg skater rounds a 4.5 m -radius turn at 6.6 m/s .What is the horizontal component of the force the ice exerts on her skate blades ? What is the vertical component of the force the ice exerts on her skate blades?At what angle can she lean without falling over?
((8.27)Q:7) Two ice skaters, Daniel (mass 70.0 kg ) and Rebecca (mass 45.0 kg ), are...
((8.27)Q:7) Two ice skaters, Daniel (mass 70.0 kg ) and Rebecca (mass 45.0 kg ), are practicing. Daniel stops to tie his shoelace and, while at rest, is struck by Rebecca, who is moving at 14.0 m/s before she collides with him. After the collision, Rebecca has a velocity of magnitude 8.00 m/s at an angle of 55.1 ∘ from her initial direction. Both skaters move on the frictionless, horizontal surface of the rink. A) What is the magnitude of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT