Question

In: Chemistry

A rigid tank contains 61.5 g of chlorine gas (Cl2) at a temperature of 77°C and...

A rigid tank contains 61.5 g of chlorine gas (Cl2) at a temperature of 77°C and an absolute pressure of 6.00 × 105 Pa. Later, the temperature of the tank has dropped to 34°C and, due to a leak, the pressure has dropped to 3.90 × 105 Pa. How many grams of chlorine gas have leaked out of the tank? (The mass per mole of Cl2 is 70.9 g/mol.)

Solutions

Expert Solution

We know that PV = nRT

                     PV = (w/M)RT

Where P - Pressure , V-Volume , n= number of moles , R = gas constant , T = temperature , m = mass of gas ,

M = molar mass

As the gas is same & Volume remains constant P/wT = constant

So P/wT = P'/ w'T'

Where

P = initial pressure = 6.00x105 Pa

w = initial mass of Cl2 = 61.5 g

T = initial temperature = 77oC = 77+273 = 350 K

P' = final pressure = 3.90x105 Pa

w' = final mass of Cl2 = ?

T' = final temperature = 34oC = 34+273 = 307 K

Plug the values we get

P/wT = P'/ w'T'

w' = (P'Tw)/(PT')

   = (3.90x105 x350x61.5) / (6.00x105 x307)

   = 45.6 g

Therefore the mass of chlorine gas leaked out is = initial mass - final mass

                                                                       = 61.5 - 45.6

                                                                       = 15.9 g


Related Solutions

Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2 (g) + 3 F2 (g)...
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2 (g) + 3 F2 (g) → 2 ClF3 (g) A 1.65 L reaction vessel, initially at 298 K, contains chlorine gas at a partial pressure of 337 mmHg and fluorine gas at a partial pressure of 741 mmHg . What is the pressure of ClF3 in the reaction vessel after the reaction? Enter your answer numerically, in terms of mmHg.
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2(g) + 3 F2(g) --> 2...
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2(g) + 3 F2(g) --> 2 ClF3(g) A 2.00-L reaction vessel, initially at 298 K, contains chlorine gas at a partial pressure of 337 mmHg and fluorine gas at a partial pressure of 729 mmHg. Identify the limiting reactant and deter- mine the theoretical yield of ClF3 in grams. I got 4.84g ClF3 for this problem, but the textbook answer is 2.84g. Can anyone tell me where I went wrong,...
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2(g)+3F2(g)→2ClF3(g) A 2.15 L reaction vessel,...
Chlorine gas reacts with fluorine gas to form chlorine trifluoride. Cl2(g)+3F2(g)→2ClF3(g) A 2.15 L reaction vessel, initially at 298 K, contains chlorine gas at a partial pressure of 337 mmHg and fluorine gas at a partial pressure of 882 mmHg. Identify the limiting reactant and determine the theoretical yield of ClF3 in grams.
Phosphorus trichloride gas and chlorine gas react to form phosphorus pentachloride gas: PCl3(g)+Cl2(g)⇌PCl5(g). A 7.5-L gas...
Phosphorus trichloride gas and chlorine gas react to form phosphorus pentachloride gas: PCl3(g)+Cl2(g)⇌PCl5(g). A 7.5-L gas vessel is charged with a mixture of PCl3(g) and Cl2(g), which is allowed to equilibrate at 450 K. At equilibrium the partial pressures of the three gases are PPCl3 = 0.127 atm , PCl2 = 0.152 atm , and PPCl5 = 1.30 atm . Part A) What is the value of Kp at this temperature? Part B) Does the equilibrium favor reactants or products?...
Consider the reaction: Cl2(g) D 2Cl(g). Exactly 1.000 mole of chlorine gas is placed into a...
Consider the reaction: Cl2(g) D 2Cl(g). Exactly 1.000 mole of chlorine gas is placed into a 1.000 L container at 298 K. Determine the number of chlorine atoms in that container at equilibrium, assuming DGof (Cl) = 105.3 kJ/mol.
A 150.0 mL gas tank contains 51.2 g of oxygen gas and 32.6 g helium gas....
A 150.0 mL gas tank contains 51.2 g of oxygen gas and 32.6 g helium gas. What is the total pressure in the tank? What is the partial pressure of oxygen?
Carbon Minoxide and Chlorine gas react to form phosgene: CO(g) + Cl2(g) <==> COCl2(g) Kp=3.10 at...
Carbon Minoxide and Chlorine gas react to form phosgene: CO(g) + Cl2(g) <==> COCl2(g) Kp=3.10 at 700 K If a reaction mixture initially contains 404 torr of CO and 257 torr of Cl2, what is the mole fraction of COCl2 when equilibrium is reached? Mole Fraction COCl2= ?
A rigid tank contains air at 500 kPa and 190 °C. As a result of heat...
A rigid tank contains air at 500 kPa and 190 °C. As a result of heat transfer to the surroundings, the temperature and pressure inside the tank drop to 64 °C and 400 kPa respectively. One kilogram of water fills a container whose volume is 0.13 m cube. The pressure in the container is 750 kPa. Calculate the total internal energy and enthalphy in the container.
A 500 L rigid tank contains a saturated water mixture at 200 C as shown: the...
A 500 L rigid tank contains a saturated water mixture at 200 C as shown: the mixture is 40% liquid and 60% vapour by volume (State 1). A valve on top of the tank is opened, and saturated vapor is slowly withdrawn from the tank. Heat transfer occurs during this process such that the temperature in the tank remains constant. The valve is closed when 50 % of the initial mass is withdrawn from the tank (State 2) (a) Determine...
A closed rigid tank contains 2 kg of water at 80 C and quality of 0.5815....
A closed rigid tank contains 2 kg of water at 80 C and quality of 0.5815. The tank is then heated until it contains only saturated vapor. How much heat (in kJ) is added to reach this condition? Include a drawing and plot the process on a P-V diagram. Organize the solution as Given and drawing: Assumptions: First Law Analysis: Solution: PV diagram:
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT