Question

In: Mechanical Engineering

Develop Fortran code for double stage pulse tube cryocooler to achieve 20 k temperature using online...

Develop Fortran code for double stage pulse tube cryocooler to achieve 20 k temperature using online configuration with regenerative matrix heat exchanger...

Develop Fortran code and plot the results in Sicilian for validation

Solutions

Expert Solution

C double stage pulse tube cryocooler to achieve 20 k temperature using online configuration with regenerative matrix heat exchanger.
   IMPLICIT NONE
   integer::t1,t2,Re,Re1,Re2
   Real::p1,p2,Vf1,Vf2,Vg1,Vg2,V1,V2,hf1,hf2,hg1,hg2,h1,
*h2,uf1,uf2,u1,u2,ug1,ug2,Area,Vel1,Vel2,x1,x2,x,d,a,b,c,fm,f1,f2,
*inc_length1,inc_length2,cum_length1,cum_length2,Vm,
*e=2.718281828,pie=3.141592654,dia=1.63E-3,w=0.010,tc=40,te=5,
* t,p,h,V,u,inc_length, cum_length
   Area=(pie*dia**2)/4
   print*, "Area=", Area
   d=(4*w)/(pie*dia**2)
   print*, "d=", d

   t1=40
   p1=1000*E**(15.06-(2418.4/(t1+273.15)))
   p=p1/1000
   print*, "Pressure=", p1/1000
   Vf1=(0.777+0.002062*t1+0.00001608*t1**2)/1000
   PRINT*, "specific volume of saturated liquid=", Vf1
   hf1= 200+1.172*t1+0.001854*t1**2
   print*, "enthalpy of saturated liquid=", hf1
   uf1=0.0002367-(1.715E-6*t1)+(8.869E-9*t1**2)
   print*, "viscosity of saturated liquid=", uf1
   V1=Vf1
   h1=hf1
   u1=uf1
   Vel1=d*V1
   print*, "velocity=", Vel1
   Re1=(Vel1*dia)/(V1*u1)
   print*, "Reynolds Number=", Re1
   f1=0.33/(Re1)**0.25
   print*, "Friction Factor=", f1

   inc_length1=0
   cum_length1=0
  
      
   do 10 t2=39,5,-1
   print*, "t2=",t2  
   p2=1000*E**(15.06-(2418.4/(t2+273.15)))
   p=p2/1000
C   print*, "Pressure=", p2/1000
   Vf2=(0.777+0.002062*t2+0.00001608*t2**2)/1000
c   PRINT*, "specific volume of saturated liquid=", Vf2
   Vg2=(-4.26+(94050*(t2+273.15))/p2)/1000
c   print*, "Specific Volume of saturated vapour=", Vg2
   hf2= 200+(1.172*t2)+(0.001854*t2**2)
c   print*, "enthalpy of saturated liquid=", hf2
   hg2=405.5+(0.3636*t2)-(0.002273*t2**2)
c   print*, "enthalpy of saturated vapour=", hg2
   uf2=(0.0002367)-(1.715E-6*t2)+(8.869E-9*t2**2)
c   print*, "viscosity of saturated liquid=", uf2
   ug2=(11.945E-6)+(50.06E-9*t2)+(0.2560E-9*t2**2)
c   print*, "viscosity of saturated vapour=", ug2
c
   a=0.5*(Vg2-Vf2)*(Vg2-Vf2)*d**2
c   print*, "a=", a
   b=1000.0*(hg2-hf2)+(Vf2*(Vg2-Vf2)*d**2)
c   print*, "b=", b
   c=1000.0*(hf2-h1)+((0.5*d**2)*(Vf2**2))-(0.5*Vel1**2)
c   print*, "c=", c
   x1=(-b+ SQRT(b**2-4*a*c))/(2*a)
   x2=(-b- SQRT(b**2-4*a*c))/(2*a)
   x=max(x1,x2)
   print*, "dryness fraction=", x

   h2=hf2*(1-x)+x*hg2
   print*, "enthalpy=", h2
   V2=Vf2*(1-x)+x*Vg2
   print*, "specific volume=", V2
   u2=uf2*(1-x)+x*ug2
   print*, "viscosity=", u2
   Vel2=d*V2
   print*, "velocity=", Vel2
   Re2=(Vel2*dia)/(V2*u2)
   print*, "Reynolds Number=", Re2
   f2=0.33/(Re2)**0.25
   print*, "Friction Factor=", f2

   fm=(f1+f2)/2
   print*, "fm=", fm
   Vm=0.5*(Vel1+Vel2)
   print*, "Vm=", Vm
   inc_length2=(2*Area*dia*((p1-p2)-(w*(V2-V1))))/(fm*Vm*w)
   print*, "inc_length=", inc_length2
   cum_length2=cum_length1+inc_length2
   print*, "cum_length=", cum_length2

   p1=p2
   Vf1=Vf2
   Vg1=Vg2
   V1=V2
   hf1=hf2
   hg1=hg2
   h1=h2
   uf1=uf2
   ug1=ug2
   u1=u2
   Vel1=Vel2
   Re1=Re2
   f1=f2
   inc_length1=inc_length2
   cum_length1=cum_length2
   OPEN (UNIT=1, FILE='RESULTS1', STATUS='OLD')
   OPEN (UNIT=2, FILE='RESULTS2', STATUS='OLD')
   WRITE (2,*) t1,p,x,V1,h1,Vel1,inc_length1, cum_length1
   CLOSE(2)
   WRITE (1,*) t2,p,x,V2,h2,Vel2,inc_length2, cum_length2
10   continue
   close(1)
  
  
   stop
   end

C LENGTH OF CAPILLARY TUBE ID=1.63mm R-22 Tc=40 Te=5 w=0.010kg/s
C   AT THE INLET OF CAPILLARY TUBE
   IMPLICIT NONE
   integer::i,m
   Real :: Area, d, a(100), b(100), c(100),l,j(100), k(100),
* Vf(100),Vg(100),hf(100),hg(100),uf(100),ug(100),Re(100),
* Vel(100),f(100),V(100), h(100), u(100), x(100), Vm(100),
* fm(100), t(100), z(100), y(100), p(100),
* inc_length(100), cum_length(100)
   REAL:: E=2.718281828, pie=3.141592654, dia=1.63E-3, w=0.010
   t(1)=40
   print*, "t(1)=", t(1)
   z(1)=2418.4/(t(1)+273.15)
   y(1)=15.06-z(1)
   p(1)=1000*E**y(1)
   print*, "Pressure=", p(1)/1000
   x(1)=0

   Vf(1)=(0.777+0.002062*t(1)+0.00001608*t(1)**2)/1000
   V(1)=Vf(1)
   PRINT*, "specific volume of saturated liquid=", V(1)
   hf(1)= 200+1.172*t(1)+0.001854*t(1)**2
   h(1)=hf(1)
   print*, "enthalpy of saturated liquid=", h(1)
   uf(1)=0.0002367-(t(1)*1.715E-6)+(t(1)*t(1)*8.869E-9)
   u(1)=uf(1)
c   print*, "viscosity of saturated liquid=", u(1)
   Area=(pie*dia**2)/4
c   print*, "Area=", Area
   d= (w*4)/(pie*dia**2)
   Vel(1)=d*Vf(1)
   print*, "velocity=", Vel(1)
   Re(1)=(Vel(1)*dia)/(Vf(1)*uf(1))
c   print*, "Reynolds Number=", Re(1)
   f(1)=0.33/(Re(1))**0.25
c   print*, "Friction Factor=", f(1)
   inc_length(1)=0
   cum_length(1)=0

   do 10 i=1,35,1

   t(i+1)=t(i)-1
   print*, "t(i+1)=", t(i+1)
   m=i
   m=m+1


   z(m)=2418.4/(t(i+1)+273.15)
   y(m)=15.06-z(m)
   p(m)=1000*E**y(m)
   print*, "Pressure=", p(m)/1000.0
  
   Vf(m)=(0.777+0.002062*t(i+1)+0.00001608*t(i+1)*t(i+1))/1000.0
c   print*, "Vf=" ,Vf(m)
   Vg(m)= (-4.26+94050*(t(i+1)+273.15)/p(m))/1000.0
c   print*, "Vg=", Vg(m)
   hf(m)=200.0+1.172*t(i+1)+0.001854*t(i+1)**2
c   print*, "hf=", hf(m)
   hg(m)=405.5+0.3636*t(i+1)-0.002273*t(i+1)**2
c   print*, "hg=", hg(m)
   uf(m)=0.0002367-(t(i+1)*1.715E-6)+(t(i+1)*t(i+1)*8.869E-9)
c   print*, "uf=", uf(m)
   ug(m)= (11.945E-6)+(t(i+1)*50.06E-9)+(t(i+1)*t(i+1)*0.2560E-9)
c   print*, "ug=", ug(m)

   a(m)=0.5*(Vg(m)-Vf(m))*(Vg(m)-Vf(m))*d**2
c   print*, "a=", a(m)
   b(m)=1000.0*(hg(m)-hf(m))+Vf(m)*(Vg(m)-Vf(m))*d**2
c   print*, "b=", b(m)
   c(m)=1000.0*(hf(m)-h(m-1))+(0.5*d*d*Vf(m)**2)-(0.5*Vel(m-1)**2)
c   print*, "c=", c(m)
   j(m)=(-b(m)+ SQRT((b(m)*b(m))-(4*a(m)*c(m))))/(2*a(m))
   k(m)=(-b(m)- SQRT((b(m)*b(m))-(4*a(m)*c(m))))/(2*a(m))
   x(m)= max(j(m), k(m))

   print*, "dryness fraction=", x(m)
   h(m)=hf(m)*(1-x(m))+x(m)*hg(m)
   print*, "enthalpy=", h(m)
   V(m)=Vf(m)*(1-x(m))+x(m)*Vg(m)
   print*, "specific volume=", V(m)
   u(m)=uf(m)*(1-x(m))+x(m)*ug(m)
c   print*, "viscosity=", u(m)
   Vel(m)=d*V(m)
   print*, "velocity=", Vel(m)
   Re(m)=(Vel(m)*dia)/(V(m)*u(m))
c   print*, "Reynolds Number=", Re(m)
   f(m)=0.33/(Re(m))**0.25
c   print*, "friction factor=", f(m)
  
   fm(m)=(f(m-1)+f(m))/2
c   print*, "fm=", fm(m)
   Vm(m)=0.5*(Vel(m-1)+Vel(m))
c   print*, "Vm=", Vm(m)

   inc_length(m)=2*Area*dia*((p(m-1)-p(m)-(w*(V(m)-V(m-1))))
*   /(fm(m)*Vm(m)*w))
   print*, "inc_length=", inc_length(m)
   cum_length(m)=cum_length(m-1)+inc_length(m)
   print*, "cum_length=", cum_length(m)
10 continue
   stop
   end


C PROGRAM FOR CALCULATION OF LENGTH OF CAPILLARY TUBE(R-22)

   IMPLICIT NONE

   Real :: t,p,Vf,Vg,V,hf,hg,h,uf,ug,u,Area,Vel,x1,x2,x,d,a,b,c,Re,
*fm,f,inc_length. cum_length

   REAL::e=2.718281828,pie=3.141592654,dia=1.63E-3,w=0010,tc=40,te=5
  
   t=tc

10   p=1000*E**(15.06-(2418.4/(t+273.15)))
   print*, "Pressure=", p/1000

   Vf=(0.777+0.002062*t+0.00001608*t**2)/1000
   PRINT*, "specific volume of saturated liquid=", Vf

   Vg=(-4.26+(94050*(t+273.15))/p)/1000
   print*, "Specific Volume of saturated vapour=", Vg

   hf= 200+1.172*t+0.001854*t**2
   print*, "enthalpy of saturated liquid=", hf

   hg=405.5+0.3636*t-0.002273*t**2
   print*, "enthalpy of saturated vapour=", hg

   uf=0.0002367-(1.715E-6*t)+(8.869E-9*t**2)
   print*, "viscosity of saturated liquid=", uf

   ug=11.945E-6+50.06E-9*t+0.2560E-9*t**2
   print*, "viscosity of saturated vapour=", ug

   Area=(pie*dia**2)/4
   print*, "Area=", Area

   d=(4*w)/(pie*dia**2)
   print*, "d=", d
  
   t=t-1

   V=d*V1
   print*, "velocity=", V

   a=0.5*(Vg-Vf)*(Vg-Vf)*d**2
   print*, "a=", a
   b=1000.0*(hg-hf)+Vf*(Vg-Vf)*d**2
   print*, "b=", b
   c=1000.0*(hf-h)+(0.5*d*d*Vf**2)-(0.5*V**2)
   print*, "c=", c
   x1=(-b+ SQRT(b**2-4*a*c))/(2*a)
   x2=(-b- SQRT(b**2-4*a*c))/(2*a)
   x=max(x1,x2)
   print*, "dryness fraction=", x

   h=hf*(1-x)+x*hg
   print*, "enthalpy=", h
   V=Vf*(1-x)+x*Vg
   print*, "specific volume=", V
   u=uf*(1-x)+x*ug
   print*, "viscosity=", u

   Re=(V*dia)/(Vf*uf)
   print*, "Reynolds Number=", Re
   f=0.33/(Re)**0.25
   print*, "Friction Factor=", f
c   inc_length=
  
  
  
   Vel=d*V
   print*, "velocity=", Vel
   Re=(Vel*dia)/(V*u)
   print*, "Reynolds Number=", Re
   f=0.33/(Re)**0.25
   print*, "friction factor=", f
  
   fm=(f+f)/2
   print*, "fm=", fm
   Vm=0.5*(Vel+Vel)
   print*, "Vm=", Vm

   inc_length=2*Area*dia*(p-p)-w*(V-V)/(fm*Vm*w)
   print*, "inc_length=", inc_length
   cum_length=inc_length+inc_length
   print*, "cum_length=", cum_length
10 continue
   stop
   end


C LENGTH OF CAPILLARY TUBE ID=1.63mm R-22 Tc=40 Te=5 w=0.010kg/s
C   AT THE INLET OF CAPILLARY TUBE
   IMPLICIT NONE
   Double Precision :: t1, z,y,p1, Vf1,V1, Vg1, hf1, hg1, uf1, ug1, d,
*Vel1, Re1,f1, t, p, Vf, Vg, hf, hg, uf, ug, Vel, Re, f, g, x, a,
* b,c, u, v, h,fm
   REAL:: E=2.718281828, pie=3.141592654, dia=1.63E-3, w=0.010
c   print*, "enter the value of temperature"
   t1=40
   z=2418.4/(t1+273.15)
   y=15.06-z
   p1=1000*E**y
   print*, "Pressure=", p1/1000
   Vf1=(0.777+0.002062*t1+0.00001608*t1**2)/1000
   V1=Vf1
   PRINT*, "specific volume of saturated liquid=", Vf1
   hf1= 200+1.172*t1+0.001854*t1**2
   print*, "enthalpy of saturated liquid=", hf1
   uf1=0.0002367-(t1*1.715E-6)+(t1*t1*8.869E-9)
   print*, "viscosity of saturated liquid=", uf1
   d= (w*4)/(pie*dia**2)
   Vel1=d*Vf1
   print*, "velocity=", Vel1
   Re1=(Vel1*dia)/(Vf1*uf1)
   print*, "Reynolds Number=", Re1
   f1=0.33/(Re1)**0.25
   print*, "Friction Factor=", f1

   t=39
   z=2418.4/(t+273.15)
   y=15.06-z
   p=1000*E**y
   print*, "Pressure=", p/1000
   Vf=(0.777+0.002062*t+0.00001608*t*t)/1000
   print*, "Vf=", Vf
   Vg= (-4.26+94050*(t+273.15)/p)/1000
   print*, "Vg=", Vg
   hf= 200+1.172*t+0.001854*t**2
   print*, "hf=", hf
   hg=405.5+0.3636*t-0.002273*t**2
   print*, "hg=", hg
   uf=0.0002367-(t*1.715E-6)+(t*t*8.869E-9)
   print*, "uf=", uf
   ug= (11.945E-6)+(t*50.06E-9)+(t*t*0.2560E-9)
   print*, "ug=", ug
   d= (w*4)/(pie*dia**2)
   a=0.5*(Vg-Vf)*(Vg-Vf)*d**2
   print*, "a=", a
   b=1000*(hg-hf)+Vf*(Vg-Vf)*d**2
   print*, "b=", b
   c=1000*(hf-hf1)+(0.5*d*d*Vf**2)-(0.5*Vel1**2)
   print*, "c=", c
   x=(-b+ SQRT((b*b)-(4*a*c)))/(2*a)
   print*, "dryness fraction=", x
   h=hf*(1-x)+x*hg
   print*, "enthalpy=", h
   v=vf*(1-x)+vg*x
   print*, "specific volume=", v
   u=uf*(1-x)+x*ug
   print*, "viscosity=", u
   Vel=d*v
   print*, "velocity=", Vel
   Re=(Vel*d)/(V*u)
   print*, "Reynolds Number=", Re
   f=0.33/(Re)**0.25
   print*, "friction factor=", f
  
  
   stop
   end


Related Solutions

develop a mathematical model using fortran 77 on pulse tube cryocooler using r 407 as a...
develop a mathematical model using fortran 77 on pulse tube cryocooler using r 407 as a refrigerant please write the code in fortran 77 language only and verify the code generated with the help of photon 95628 from both the virgin the answer is accurate validate the reason with the available theoretical answers
write a fortran code on helical transcritical compression tube used in pulse tube cryocooler using R407...
write a fortran code on helical transcritical compression tube used in pulse tube cryocooler using R407 refrigerant. it is different than already replied question on chegg. please dont copy paste that answer i want genuine and correct code using fortran 77 only
write the mathematical code in language fortran 77 about Linda Hanson palstic cryocooler refrigerator using r407c...
write the mathematical code in language fortran 77 about Linda Hanson palstic cryocooler refrigerator using r407c refrigerant with moving coil magnet compressor technology the compressor is used is scroll casing using r407c refrigerant hand blender ammonia and solid CO2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT