Question

In: Physics

A car traveling 37.0 m/s overtakes another car going only 21.0 m/s. When the faster car...

A car traveling 37.0 m/s overtakes another car going only 21.0 m/s. When the faster car is still behind the slower one, it sounds a horn of frequency 1400.0Hz. What is the frequency heard by the driver of the slower car?

Solutions

Expert Solution

Sound propagates at a speed of about 1,100 feet per second in air at sea level and the sound is in the form of sinusoidal waves at a frequency depending upon the source (horn). In a way, sound spreads like the ripples on a still mill pond when you throw in a stone. If a swimmer swims toward the stone, he/she will encounter more ripples per second than if standing still and less ripples per second if swimming away from the stone. The pitch of the "sound" depends on the ripples per second encountered.

In your example, the driver is moving much slower than the sound waves (which are traveling at Mach one, like a jet plane!). If the car was still the pitch of the horn would be F1 (frequency 1). If the car approaches the listner the pitch increases to F2 because each new wave originates closer and closer to the listener and has less far to travel. If the driver and listener are traveling in the same direction at the same speed, the drivers pitch increases from F1 to F2 but the listener's motion shifts the pitch back from F2 to F1 because the time it takes each wave to travel to the listener is the same as if both were at rest. The distance between them is constant if they are at rest or traveling at the same speed in the same direction. Of course if both the driver and the listener are traveling at the speed of sound in the same direction, the sound would never reach the listener.

Doppler effect

No

The formula goes something like this

Fo= intial frequency
F=Heard frequency
V=speed of sound
Vs=speed of source
Vo=speed of observer

F=Fo*(V-Vs)/(V-Vo)

so lets plug in some make believe numbers.

Fo=10...... V=100.......Vs=30...... Vo=30

F=10*(100-30)/(100-30)=10


Related Solutions

A railroad car moving at a speed of 3.20 m/s overtakes, collides, and couples with two...
A railroad car moving at a speed of 3.20 m/s overtakes, collides, and couples with two coupled railroad cars moving in the same direction at 1.20 m/s. All cars have a mass of mass 1.10 105 kg. Determine the following. (a) speed of the three coupled cars after the collision____ (Give your answer to at least two decimal places.) m/s (b) kinetic energy lost in the collision ___ J 2. A cue ball at rest on a frictionless pool table...
A 7.61 kg block, traveling at a speed of 21.0 m/s, undergoes a perfectly inelastic collision...
A 7.61 kg block, traveling at a speed of 21.0 m/s, undergoes a perfectly inelastic collision with a 12.9 kg block which starts at rest. a) Find the final speed of each block. b) Calculate how much energy was lost in the collision (final kinetic energy minus initial kinetic energy). If you were unable to calculate the answer to part (a), assume the final velocity is 5.00 m/s. c) How much energy would have been lost if the collision were...
A car is traveling to the right with an initial speed of 20 m/s. The car...
A car is traveling to the right with an initial speed of 20 m/s. The car slows down to a stop in 25 seconds. What is the acceleration of the car?
A 0.00410–kg bullet traveling horizontally with a speed of 1.00 ✕ 103 m/s enters a 21.0–kg...
A 0.00410–kg bullet traveling horizontally with a speed of 1.00 ✕ 103 m/s enters a 21.0–kg door, embedding itself 19.0 cm from the side opposite the hinges as in the figure below. The 1.00–m–wide door is free to swing on its hinges. (a) Before it hits the door, does the bullet have angular momentum relative to the door's axis of rotation? Yes or No      Explain. (b) Is mechanical energy conserved in this collision? Answer without doing a calculation. Yes or...
A car is going at 11.2 m/s on a horizontal straight road. When the traffic light...
A car is going at 11.2 m/s on a horizontal straight road. When the traffic light is 30 m away, it turns red. The reaction time of the driver is 0.3 s. The car stops just before the traffic light with constant deceleration when the break is applied. Find the time it takes for the car to stop, from the moment the light becomes red. Plot speed of the car on y-axis and the time on the x-axis, taking t=0...
An ambulance is traveling south at 50 m/s, away from a car that is traveling north...
An ambulance is traveling south at 50 m/s, away from a car that is traveling north at 30 m/s. The ambulance driver hears his siren at a frequency of 750 Hz. The velocity of sound is 343 m/s . What frequency (in Hz) does the driver of the car hear the siren?
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at 15.o m/s. The cars stick together. Assume that any otherunbalanced forces are negligible. (Draw Diagrams) (a) What is the speed of the wreckage just after the collision? (b) In what directions does the wreckage move just after the collision? (c) What is the total Kinetick Energy before the collision? (d) What is the total Kinetic Energy after?
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at 15.0 m/s. The cars stick together. Assume that any other unbalanced forces are negligible. (Draw Diagrams) (a) What is the speed of the wreckage just after the collision? (b) In what direction does the wreckage move just after the collision? (c) What is the total Kinetic Energy before the collision? (d) What is the total Kinetic Energy after?
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is...
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is initially at rest at the stoplight. The cars stick together and move 3.30 m before friction causes them to stop. Determine the coefficient of kinetic friction betwen the cars and the road, assuming that the negative acceleration is constant and that all wheels on both cars lock at the time of impact.
​A car traveling at 34 m/s runs out of gas while traveling up a 9.0 slope
A car traveling at 34 m/s runs out of gas while traveling up a 9.0 slope Part A How far will it coast before starting to roll back down? Express your answer in meters. A piano has been pushed to the top of the ramp at the back of a moving van. The workers think it is safe, but as they walk away it begins to roll down the ramp. Neglect the friction between the piano and the ramp. Part AIf the back of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT