Question

In: Physics

Give an example of a real-world system that looks nothing like a mass on a spring...

  1. Give an example of a real-world system that looks nothing like a mass on a spring but still behaves like a harmonic oscillator. The weirder the better!

can you please explain the example as well

Solutions

Expert Solution

When we connect a charged capacitor to a coil, behaviour of this system is analogous to that of simple harmonic oscillator.

Potential difference across the capacitor will be

Where,

q = Charge on the capacitor at a particular instance

C = Capacitance of the capacitor

And potential difference across the coil would be

Where,

L = Self Inductance of coil

I = Current flowing through coil

Now according to Kirchhoff's Voltage law(i. e. algebraic sum of all voltages around a closed loop in a circuit is always equal to zero).

....... (1)

Since current is the rate of flow of electric charge

And

Putting these values in (1) we get

This equation is similar to equation of simple harmonic oscillation.

Here,


Related Solutions

A mass on a spring is subjected to an external force that looks like a triangular...
A mass on a spring is subjected to an external force that looks like a triangular wave: F(t) = 1+t from t=-1 to 0 F(t) = 1-t from t=0 to t=1 Periodicity = 2 The differential equation for the position of the mass (using Newton’s law) ends up being: x’’(t) + 2x’(t) + 101x(t) = F(t) 1. Find the generic homogeneous solution 2. Find the Fourier series of F(t) 3. Find the Fourier series of the particular solution (which is...
Define double-entry accounting and give a real world example
Define double-entry accounting and give a real world example
What is Information Technology Standards ? Please give a real world example
What is Information Technology Standards ? Please give a real world example
What is Information Technology Standards? Please give a real world example?
What is Information Technology Standards? Please give a real world example?
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant 9 lbin is suddenly set in motion at t=0 by an external force of 180cos(8t) lb, determine the position of the mass at any time. Assume that g=32 fts2. Solve for u in feet.
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant 9 lb/in is suddenly set in motion at t=0 by an external force of 99cos(20t) lb, determine the position of the mass at any time. Assume that g=32 ft/s2. Solve for u in feet.
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant 9 lbin is suddenly set in motion at t=0 by an external force of 33cos(20t) lb, determine the position of the mass at any time. Assume that g=32 fts2. Solve for u in feet. Enclose arguments of functions in parentheses. For example, sin(2x). u(t)=?
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant 9 lbin is suddenly set in motion at t=0 by an external force of 288cos(4t) lb, determine the position of the mass at any time. Assume that g=32 fts2. Solve for u in feet. Enclose arguments of functions in parentheses. For example, sin(2x).
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant 4 lbin is suddenly set in motion at t=0 by an external force of 63cos(12t) lb, determine the position of the mass at any time. Assume that g=32 fts2. Solve for u in feet.
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant 16 lbin is suddenly set in motion at t=0 by an external force of 432cos(8t) lb, determine the position of the mass at any time. Assume that g=32 fts2. Solve for u in feet. Enclose arguments of functions in parentheses. For example, sin(2x). u(t) = ?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT