In: Statistics and Probability
For the data set (−3,−1),(2,2),(5,4),(8,6),(10,11),
carry out the hypothesis test H0 β1=0 HA β1≠0
Determine the value of the test statistic and the associated p-value.
| x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| -3 | -1 | 54.7600 | 29.1600 | 39.960 | 
| 2 | 2 | 5.7600 | 5.7600 | 5.760 | 
| 5 | 4 | 0.3600 | 0.1600 | -0.240 | 
| 8 | 6 | 12.9600 | 2.5600 | 5.760 | 
| 10 | 11 | 31.3600 | 43.5600 | 36.960 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 22.00 | 22.00 | 105.20 | 81.20 | 88.20 | 
| mean | 4.40 | 4.40 | SSxx | SSyy | SSxy | 
Sample size,   n =   5      
here, x̅ = Σx / n=   4.400          
ȳ = Σy/n =   4.400          
SSxx =    Σ(x-x̅)² =    105.2000      
SSxy=   Σ(x-x̅)(y-ȳ) =   88.2      
              
estimated slope , ß1 = SSxy/SSxx =   88.2/105.2=   0.8384      
slope hypothesis test      
Ho:   β1=   0
H1:   β1╪   0
n=   5  
alpha =   0.1  
estimated std error of slope =Se(ß1) = Se/√Sxx =    1.5549/√105.2=   0.1516
t stat = estimated slope/std error =ß1 /Se(ß1) =    (0.8384-0)/0.1516=   5.53
Degree of freedom ,df = n-2=   3  
      
p-value =    0.0116  
decison :    p-value<α , reject Ho  
Conclusion:   Reject Ho and conclude that slope is significantly different from zero