In: Finance
Consider a person who begins contributing to a retirement plan at age 25 and contributes for 40 years until retirement at age 65. For the first ten years, she contributes $3,700 per year. She increases the contribution rate to $5,700 per year in years 11 through 20. This is followed by increases to $10,700 per year in years 21 through 30 and to $15,700 per year for the last ten years. This money earns a return of 10 percent.
First compute the value of the retirement plan when she turns age 65. (Round your answer to 2 decimal places.)
Compute the annual payment she would receive over the next 40 years if the wealth was converted to an annuity payment at 9 percent. (Round your answer to 2 decimal places.)
| part A | |||||||||
| 1) | |||||||||
| Value of $3,700 per year after 10 years(Future value of annuity) | = | Amt[{(1+r)^n}-1]/r | |||||||
| Where | |||||||||
| amount | = | $3,700 | |||||||
| rate (.r) | = | 10% | |||||||
| time=t | = | 10 | |||||||
| Future value of annuity(when she is 35 yrs old) | = | $3,700*[{(1+0.1)^10}-1]/0.1 | |||||||
| = | $3,700*[{(1.1)^10}-1]/0.1 | ||||||||
| = | $3,700*[2.5937-1]/0.1 | ||||||||
| = | $3,700*[1.5937]/0.1 | ||||||||
| = | $58,966.90 | ||||||||
| Future value of $58966.6 after 30 more years | |||||||||
| = | Amt(1+r)^n | ||||||||
| Where | |||||||||
| amount | = | $58,967 | |||||||
| rate (.r) | = | 10% or 0.1 | |||||||
| time=t | = | 30 years | |||||||
| Future value(when she is 65 years old) after 30 more years | = | $58966.9*(1+0.1)^30 | |||||||
| = | $58966.9*(1.1)^30 | ||||||||
| = | $58966.9*17.4494 | ||||||||
| = | $1,028,937.02 | ||||||||
| 2) | Value of $5,700 per year(Future value of annuity)for 10 years | = | |||||||
| Amt[{(1+r)^n}-1]/r | |||||||||
| Where | |||||||||
| amount | = | $5,700 | |||||||
| rate (.r) | = | 10% | |||||||
| time=t | = | 10 | |||||||
| Future value of annuity(when she is 45 yrs old) | = | $5,700*[{(1+0.1)^10}-1]/0.1 | |||||||
| = | $5,700*[{(1.1)^10}-1]/0.1 | ||||||||
| = | $5,700*[2.5937-1]/0.1 | ||||||||
| = | $5,700*[1.5937]/0.1 | ||||||||
| = | $90,840.90 | ||||||||
| Future value of $90840.9 after 20 more years(when she will 65 yrsold) | |||||||||
| = | Amt(1+r)^n | ||||||||
| Where | |||||||||
| amount | = | $90,841 | |||||||
| rate (.r) | = | 10% or 0.1 | |||||||
| time=t | = | 20 years | |||||||
| Future value(when she is 65 years old) after 20 more years | = | $90840.9*(1+0.1)^20 | |||||||
| = | $90840.9*(1.1)^20 | ||||||||
| = | $90840.9*6.7275 | ||||||||
| = | $611,132.15 | ||||||||
| 3) | |||||||||
| Value of $10,700 per year(Future value of annuity)for 10 years | = | Amt[{(1+r)^n}-1]/r | |||||||
| Where | |||||||||
| amount | = | $10,700 | |||||||
| rate (.r) | = | 10% | |||||||
| time=t | = | 10 | |||||||
| Future value of annuity(when she is 55 yrs old) | = | $10,700*[{(1+0.1)^10}-1]/0.1 | |||||||
| = | $10,700*[{(1.1)^10}-1]/0.1 | ||||||||
| = | $10,700*[2.5937-1]/0.1 | ||||||||
| = | $10,700*[1.5937]/0.1 | ||||||||
| = | $170,525.90 | ||||||||
| Future value of $170,525.9 after 10 more years (when she will be 65 yrs old | |||||||||
| = | Amt(1+r)^n | ||||||||
| Where | |||||||||
| amount | = | $170,526 | |||||||
| rate (.r) | = | 10% or 0.1 | |||||||
| time=t | = | 10 years | |||||||
| Future value(when she is 65 years old) after 10 more years | = | $170,525.9*(1+0.1)^10 | |||||||
| = | $170,525*(1.1)^10 | ||||||||
| = | $170,525*2.5937 | ||||||||
| = | $442,290.69 | ||||||||
| 4) | |||||||||
| Value of $15,700 per year(Future value of annuity)for 10 years | = | Amt[{(1+r)^n}-1]/r | |||||||
| Where | |||||||||
| amount | = | $15,700 | |||||||
| rate (.r) | = | 10% | |||||||
| time=t | = | 10 | |||||||
| Future value of annuity(when she is 65 yrs old) | = | $15,700*[{(1+0.1)^10}-1]/0.1 | |||||||
| = | $15,700*[{(1.1)^10}-1]/0.1 | ||||||||
| = | $15,700*[2.5937-1]/0.1 | ||||||||
| = | $15,700*[1.5937]/0.1 | ||||||||
| = | $250,210.90 | ||||||||
| Total amount when she is 65 years old =amount in 1+amount in2 +amount in 3+amount in4 | |||||||||
| = | 1028937.02+$611,132.15+$442,290.69+$250,210.0 | ||||||||
| = | $2,332,569.86 | ||||||||
| Part B | |||||||||
| annual payment she would receive for next 40 years(Present value of annuity) | |||||||||
| = | Amt[1-(1+r)^-n]/r | = | |||||||
| here | |||||||||
| Present value of annuity | = | $2,332,569.86 | |||||||
| r | = | 9% | |||||||
| time=n= | 40 | ||||||||
| amt | = | ? | |||||||
| Therefore | |||||||||
| 2,332,569.86 | = | Amt[1-(1+0.09)^-40]/0.09 | |||||||
| 2,332,569.86 | = | Amt[(1-0.03184)/0.09] | |||||||
| 2,332,569.86 | = | Amt*10.75736 | |||||||
| 2,332,569.86/10.75736 | = | amt | |||||||
| $216,834.79 | = | amt | |||||||
| She will receive $216,834.79 annually for the next 40 years | |||||||||
| There may be little difference due to decimal places.Please do not downvote on this basis | |||||||||
| Please upvote the answer | |||||||||
| If you have any doubt,please ask in the comments | |||||||||