In: Math
Find the following probability for the standard normal random variable z. a. P(zequals3) e. P(minus3less than or equalszless than or equals3) b. P(zless than or equals3) f. P(minus1less than or equalszless than or equals1) c. P(zless than3) g. P(negative 2.66less than or equalszless than or equals0.06) d. P(zgreater than3) h. P(negative 0.75less thanzless than1.09)
(a)
P(Z= 3) =0
EXPLANATION: For a continuous variable, probability at a particular point =0
(e)
P( - 3 Z 3) = 0.9973
EXPLANATION: By 68 - 95 - 99.7 Rule:
(b) P(Z3):
Table of Area Under Standard Normal Curve gives area = 0.4987
So,
P(Z3) = 0.5 + 0.4987 = 0.9987
(f)
P(-1Z<1) = 0.6827
EXPLANATION: By 68 - 95 - 99.7 Rule:
(c) P(Z<3) :
Table of Area Under Standard Normal Curve gives area = 0.4987
So,
P(Z<3) = 0.5 + 0.4987 = 0.9987
(g)
P(-2.66
Z0.06):
Case 1 :
For Z from - 2.66 to mid value:
Table gives area = 0.4971
Case 2; For Z from mid value to 0.06:
Table gives area = 0.0239
So,
P(-2.66 < Z< 0.06) =0.4971 + 0.0239 = 0.5210
(d)
P(Z>3)
Table gives area =0.4987
So,
P(Z>3) = 0.5 - 0.4987 = 0.0013
(h)
P(-0.75 < Z < 1.09):
Case1: For Z< - 0.75:
Table gives area =0.2734
Case2: For Z from mid value to 1.09:
Table gives area = 0.3621
So,
P(-0.75<Z<1.09) = 0.2734 + 0.3621 = 0.6355