In: Finance
XYZ just paid a dividend of $ 2.65 on its shares. The dividend growth rate is expected to be constant 4% per annum forever. Investors demand a return of 16% for the first three years, a return of 14% for the next three years and a return of 11% thereafter. What is the current price of this financial instrument?
Current price is $ 32.74
| As per dividend discount model, current price of financial instrument is the present value of future dividend. | ||||||||||
| Step-1:Present value of dividend of first 6 years | ||||||||||
| Present value of dividend of year: | ||||||||||
| 1 | = | 2.65 | * | 1.04^1 | * | 1.16^-1 | = | $ 2.38 | ||
| 2 | = | 2.65 | * | 1.04^2 | * | 1.16^-2 | = | $ 2.13 | ||
| 3 | = | 2.65 | * | 1.04^3 | * | 1.16^-3 | = | $ 1.91 | ||
| 4 | = | 2.65 | * | 1.04^4 | * | 1.16^-3 | * | 1.14^-1 | = | $ 1.74 | 
| 5 | = | 2.65 | * | 1.04^5 | * | 1.16^-3 | * | 1.14^-2 | = | $ 1.59 | 
| 6 | = | 2.65 | * | 1.04^6 | * | 1.16^-3 | * | 1.14^-3 | = | $ 1.45 | 
| Total | $ 11.20 | |||||||||
| Step-2:Present value of dividend after year 6 | ||||||||||
| Present value | = | D6*(1+g)/(k-g)*DF6 | Where, | |||||||
| = | $ 21.54 | D6 | 2.65 | * | 1.04^6 | = | $ 3.35 | |||
| g | = | 4% | ||||||||
| k | 11% | |||||||||
| DF6 | 1.16^-3 | * | 1.14^-3 | = | 0.432426 | |||||
| Step-3:Sum of present value of future dividends | ||||||||||
| Sum of present value of future dividends | = | $ 11.20 | + | $ 21.54 | ||||||
| = | $ 32.74 | |||||||||