In: Math
Compare the height, weight (in inches), and age for Eagles versus Patriots, using t tests. Provide the conclusions based on the t tests.
Eagles
Age | Height (") | ||
35 | 66 | ||
28 | 69 | ||
69 | |||
23 | 69 | ||
23 | 69 | ||
29 | 69 | ||
23 | 70 | ||
24 | 70 | ||
31 | 70 | ||
28 | 70 | ||
24 | 70 | ||
24 | 71 | ||
24 | 71 | ||
26 | 71 | ||
31 | 71 | ||
23 | 71 | ||
26 | 71 | ||
25 | 72 | ||
25 | 72 | ||
31 | 72 | ||
29 | 72 | ||
33 | 72 | ||
30 | 72 | ||
22 | 72 | ||
28 | 72 | ||
23 | 72 | ||
24 | 72 | ||
29 | 72 | ||
23 | 72 | ||
24 | 72 | ||
26 | 73 | ||
32 | 73 | ||
26 | 73 | ||
24 | 73 | ||
23 | 73 | ||
29 | 74 | ||
24 | 74 | ||
23 | 74 | ||
30 | 74 | ||
24 | 74 | ||
26 | 74 | ||
38 | 74 | ||
26 | 74 | ||
24 | 74 | ||
25 | 74 | ||
27 | 74 | ||
25 | 74 | ||
26 | 75 | ||
22 | 75 | ||
26 | 75 | ||
30 | 75 | ||
25 | 75 | ||
28 | 75 | ||
30 | 75 | ||
33 | 75 | ||
28 | 75 | ||
25 | 75 | ||
29 | 75 | ||
25 | 76 | ||
33 | 76 | ||
27 | 76 | ||
25 | 76 | ||
36 | 76 | ||
24 | 76 | ||
24 | 76 | ||
26 | 76 | ||
31 | 77 | ||
29 | 77 | ||
27 | 77 | ||
77 | |||
25 | 77 | ||
27 | 77 | ||
33 | 78 | ||
29 | 78 | ||
28 | 78 | ||
24 | 78 | ||
25 | 78 |
Pats
Age | Height (") | ||
28 | 75 | ||
28 | 74 | ||
32 | 71 | ||
26 | 75 | ||
28 | 72 | ||
31 | 78 | ||
28 | 71 | ||
41 | 76 | ||
33 | 78 | ||
30 | 75 | ||
24 | 74 | ||
28 | 70 | ||
24 | 76 | ||
28 | 71 | ||
30 | 78 | ||
26 | 75 | ||
31 | 71 | ||
25 | 70 | ||
24 | 77 | ||
24 | 75 | ||
30 | 75 | ||
25 | 70 | ||
29 | 72 | ||
32 | 70 | ||
25 | 76 | ||
29 | 74 | ||
26 | 78 | ||
26 | 75 | ||
25 | 74 | ||
24 | 79 | ||
27 | 71 | ||
28 | 73 | ||
34 | 73 | ||
26 | 74 | ||
26 | 76 | ||
29 | 78 | ||
28 | 76 | ||
27 | 73 | ||
34 | 74 | ||
40 | 72 | ||
28 | 75 | ||
29 | 73 | ||
24 | 76 | ||
24 | 76 | ||
32 | 74 | ||
31 | 75 | ||
24 | 78 | ||
24 | 70 | ||
24 | 75 | ||
25 | 70 | ||
25 | 76 | ||
24 | 77 | ||
25 | 74 | ||
24 | 76 | ||
26 | 74 | ||
24 | 75 | ||
28 | 68 | ||
24 | 72 | ||
25 | 73 | ||
25 | 69 | ||
31 | 70 | ||
26 | 68 | ||
25 | 71 | ||
24 | 77 | ||
24 | 72 | ||
25 | 73 | ||
33 | 72 | ||
30 | 80 | ||
25 | 77 | ||
24 | 74 | ||
26 | 74 | ||
24 | 75 | ||
27 | 75 | ||
27 | 78 | ||
26 | 70 | ||
23 | 70 | ||
24 | 77 |
Here we want to test that there is significant differecne between heights of Eagles and Patriots at 5% level of significance.
Let's use minitab:
Choose Stat > Basic Statistics > Paired t
Choose Samples in columns
Sample in columns: Choose if you have entered raw data in two columns.
First sample: Enter the column containing the first sample
Second sample: Enter the column containing the second sample
versus
where is the population mean of the differences.
So we get following output
MTB > Paired 'Height_Eagles' 'Height_Pats'.
Paired T-Test and CI: Height_Eagles, Height_Pats
Paired T for Height_Eagles - Height_Pats
N Mean StDev SE Mean
Height_Eagles 77 73.519 2.664
0.304
Height_Pats 77 73.948
2.790 0.318
Difference 77 -0.429
3.995 0.455
95% CI for mean difference: (-1.335, 0.478)
T-Test of mean difference = 0 (vs not = 0): T-Value = -0.94
P-Value = 0.349
Decision rule:
1) If p-value < level of significance (alpha) then we reject null hypothesis
2) If p-value > level of significance (alpha) then we fail to reject null hypothesis.
Here p value = 0.349 > 0.05 so we used 2nd rule.
That is we failed reject null hypothesis
Conclusion:
At 5% level of significance there are sufficient evidence to say that the sample data indicates that there is no significant differecne between heights of Eagles and Patriots.