In: Statistics and Probability
The relationship between "strength" and "fineness" of cotton fibers was the subject of a study that produced the following data. (Give your answers correct to two decimal places.)
x, Strength | 75 | 75 | 87 | 80 | 80 | 76 | 78 | 71 | 73 | 87 |
y, Fineness | 4 | 4.3 | 4.1 | 4.4 | 4.9 | 4.6 | 4.7 | 4 | 4.4 | 4.7 |
(a) Find the 98% confidence interval for the mean measurement of
fineness for fibers with a strength of 75.
Lower Limit -
Upper Limit -
(b) Find the 98% prediction interval for an individual measurement
of fineness for fibers with a strength of 75.
Lower Limit -
Upper Limit -
X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
75 | 4 | 10.240 | 0.168 | 1.312 |
75 | 4.3 | 10.240 | 0.012 | 0.352 |
87 | 4.1 | 77.440 | 0.096 | -2.728 |
80 | 4.4 | 3.240 | 0.000 | -0.018 |
80 | 4.9 | 3.240 | 0.240 | 0.882 |
76 | 4.6 | 4.840 | 0.036 | -0.418 |
78 | 4.7 | 0.040 | 0.084 | -0.058 |
71 | 4 | 51.840 | 0.168 | 2.952 |
73 | 4.4 | 27.040 | 0.000 | 0.052 |
87 | 4.7 | 77.440 | 0.084 | 2.552 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 782 | 44.1 | 265.600 | 0.9 | 4.88 |
mean | 78.20 | 4.41 | SSxx | SSyy | SSxy |
sample size ,n =10
here, x̅ =78.20,ȳ =4.41
SSxx = Σ(x-x̅)² = 265.60
SSxy=Σ(x-x̅)(y-ȳ) =4.9
slope , ß1 = SSxy/SSxx =0.01837
intercept,ß0 = y̅-ß1* x̄ =2.97319
so, regression line isŶ =2.97+0.02*x
SSE=(Sx*Sy - S²xy)/Sx = 0.80
std error ,Se = √(SSE/(n-2)) = 0.316
-----------------------------------------------------
a)
X Value=75
Confidence Level=98%
Sample Size , n=10
Degrees of Freedom,df=n-2 =8
critical t Value=tα/2 =2.896[excel function: =t.inv.2t(α/2,df) ]
Predicted Y (YHat), Ŷ =2.97+0.02*75 = 4.35
margin of error,E=t*Std error=t* Se *√(1/n+(X-X̅)²/Sxx) = 0.3408
Confidence Lower Limit=Ŷ -E =4.01
Confidence Upper Limit=Ŷ +E =4.69
-----------------------------------------
c)
for prediction interval
margin of error,E=t*std error=t* Se *√(1 + 1/n+(X-X̅)²/Sxx) = 0.977
Prediction Interval Lower Limit=Ŷ -E =3.37
Prediction Interval Upper Limit=Ŷ +E =5.33