In: Math
A regression Study involving 32 convenience stores was undertaken to examine the relationship between monthly newspaper advertising expenditures (X) and the number of the customers shopping at the store (Y). A partial ANOVA table is below.
| Source | SS | DF | MS | F | 
| Regression | 2850 | |||
| Error | 1260 | |||
| Total | 
Complete the mission parts of the table.
Test whether or not X and Y are linearly related using the correlation coefficient. Use alpha = .01
What proportion of the variation in the number of customers is left UNEXPLAINED by this model?
At the 1% level of significance, what is the critical value to test the explanatory power of the model?
| Source | SS | DF | MS | F | 
| Regression | 2850 | 1 | 2850 | 2.2619 | 
| Error | 37800 | 30 | 1260 | |
| Total | 40650 | 31 | 
R²=SSR/SST=0.07011
r = √R² = 0.26478
-------
correlation hypothesis test      
           
           
Ho:   ρ = 0      
           
       
Ha:   ρ ╪ 0      
           
       
          
           
       
n=   32          
           
   
alpha,α =    0.01      
           
       
correlation , r =   0.2648      
           
       
          
           
       
Df =    n-2 =   30  
           
       
t-test statistic = r*√(n-2)/√(1-r²) =   
    0.2648   * √   
30   / √ ( 1 -    0.2648   ² )
=   1.504
          
           
       
p-value =    0.1430   [excel function:
=t.dist.2t(t-stat,df) ]       
           
   
decision:   p value > α , so, do not reject the null
hypothesis          
           
   
so,  X and Y are not linearly related
---------
0.9299 proportion of the variation in the number of customers is left UNEXPLAINED by this model
---------
critical value=F(0.01,1,30) = 7.5625