Question

In: Statistics and Probability

Dataset #2 – Star War Film Data Description: Weekly domestic box office revenues for the 8...

Dataset #2 – Star War Film Data

Description: Weekly domestic box office revenues for the 8 Star War films

Research ‘Question’: Find a ‘best’ linear model to predict Star War revenue/day using the number of theaters, number of weeks since release, film number, and release year.

theaters weeknum film year revperday
3672 1 IV 1977 18498679.7
3672 2 IV 1977 9505314.86
3672 3 IV 1977 4127697.71
3672 4 IV 1977 2632591
3422 5 IV 1977 1950438.14
3311 6 IV 1977 2521766.29
3186 7 IV 1977 2831227.86
2681 8 IV 1977 1023363.71
2170 9 IV 1977 652710.714
1851 10 IV 1977 566439
1202 11 IV 1977 250623.714
907 12 IV 1977 179533.714
505 13 IV 1977 102494.857
311 14 IV 1977 74403.1429
206 15 IV 1977 44651.5714
215 16 IV 1977 46953.5714
228 17 IV 1977 54924.2857
172 18 IV 1977 29591.1429
291 19 IV 1977 76476.1429
270 20 IV 1977 59581
160 21 IV 1977 41030.1429
111 22 IV 1977 28579.4286
57 23 IV 1977 22707.5714
43 24 IV 1977 17242.4286
40 25 IV 1977 11668.7143
30 26 IV 1977 9229
3682 1 V 1980 15161652.6
3682 2 V 1980 8844278.29
3682 3 V 1980 5120454.57
3387 4 V 1980 1772898.57
3025 5 V 1980 1165040.57
2505 6 V 1980 1340427.71
2505 7 V 1980 1944470
2015 8 V 1980 799467
1550 9 V 1980 421755.857
1077 10 V 1980 303789.143
783 11 V 1980 142854.857
502 12 V 1980 85785.1429
352 13 V 1980 52545.1429
441 14 V 1980 70452.4286
388 15 V 1980 45788.2857
388 16 V 1980 41332.7143
360 17 V 1980 39414.5714
205 18 V 1980 24388.8571
151 19 V 1980 17734.5714
95 20 V 1980 14462.7143
80 21 V 1980 12256.4286
72 22 V 1980 4412
15 23 V 1980 786.285714
7 24 V 1980 455.285714
3855 1 VI 1983 17580664.1
3855 2 VI 1983 7119019.71
3805 3 VI 1983 3913192.71
3004 4 VI 1983 2412629
2725 5 VI 1983 1652119.43
2002 6 VI 1983 977608.429
1460 7 VI 1983 643752.429
1008 8 VI 1983 404027.429
605 9 VI 1983 240410.429
409 10 VI 1983 169831.286
310 11 VI 1983 107789.429
248 12 VI 1983 80801.4286
391 13 VI 1983 95609.8571
391 14 VI 1983 90454.4286
321 15 VI 1983 38485
228 16 VI 1983 29893
246 17 VI 1983 25054
164 18 VI 1983 11661.4286
119 19 VI 1983 9036
74 20 VI 1983 8862.57143
55 21 VI 1983 7250
55 22 VI 1983 5731.71429
3858 1 I 1999 20897581.3
3858 2 I 1999 9015073
3858 3 I 1999 3487897.43
3325 4 I 1999 1834563.57
2750 5 I 1999 1438515.14
2424 6 I 1999 1818900.29
2316 7 I 1999 1315771.29
1555 8 I 1999 510037.571
1003 9 I 1999 345916.714
560 10 I 1999 159016.429
340 11 I 1999 96117.5714
245 12 I 1999 69097
160 13 I 1999 49419.4286
441 14 I 1999 136217
422 15 I 1999 93123.1429
331 16 I 1999 57197.7143
231 17 I 1999 39329.1429
191 18 I 1999 29226.5714
140 19 I 1999 22458.7143
89 20 I 1999 14974.7143
4285 1 II 2002 19483946.1
4285 2 II 2002 7050087.71
4005 3 II 2002 3828435.43
3125 4 II 2002 2158583
2585 5 II 2002 1212925.71
1955 6 II 2002 817540.571
1322 7 II 2002 488799.571
1017 8 II 2002 417103.143
775 9 II 2002 193287.571
589 10 II 2002 143490.429
320 11 II 2002 59758.8571
241 12 II 2002 41315.4286
408 13 II 2002 74103.8571
377 14 II 2002 54086.4286
283 15 II 2002 38864.1429
225 16 II 2002 27574.1429
159 17 II 2002 18940
105 18 II 2002 14270.4286
90 19 II 2002 9984.85714
56 20 II 2002 8214.28571
52 21 II 2002 4788.28571
38 22 II 2002 2020.85714
4325 1 III 2005 21314847.9
4455 2 III 2005 6561318.43
4393 3 III 2005 3879632
3455 4 III 2005 1973952.71
2771 5 III 2005 1146060.29
1936 6 III 2005 718753.857
1508 7 III 2005 474352.286
1091 8 III 2005 403442.857
744 9 III 2005 173298.571
415 10 III 2005 78098.7143
301 11 III 2005 51525.8571
190 12 III 2005 33442.8571
505 13 III 2005 84180.1429
356 14 III 2005 51179.8571
245 15 III 2005 33814.8571
201 16 III 2005 21102
135 17 III 2005 17775.7143
95 18 III 2005 11938.8571
44 19 III 2005 7837.85714
44 20 III 2005 6345.28571
36 21 III 2005 3118.28571
23 22 III 2005 1052.42857
4125 1 VII 2015 24281289.7
4125 2 VII 2015 8218801.86
4125 3 VII 2015 3098252
3577 4 VII 2015 1644693.14
1840 5 VII 2015 1302432.86
1732 6 VII 2015 1294747
1732 7 VII 2015 918122.286
1507 8 VII 2015 442270.857
941 9 VII 2015 291175.571
725 10 VII 2015 168580.857
465 11 VII 2015 109324.714
365 12 VII 2015 71774.2857
409 13 VII 2015 93213.2857
321 14 VII 2015 77634.8571
303 15 VII 2015 45363.7143
208 16 VII 2015 30144.8571
122 17 VII 2015 20494.5714
94 18 VII 2015 14027.7143
85 19 VII 2015 12463.4286
66 20 VII 2015 8202.42857
4375 1 VIII 2017 32302438.4
4375 2 VIII 2017 10059634.3
4145 3 VIII 2017 4872357.86
3175 4 VIII 2017 2777846.71
2414 5 VIII 2017 1630078.29
1738 6 VIII 2017 963457.571
1328 7 VIII 2017 558613
1092 8 VIII 2017 564588.286
810 9 VIII 2017 196717.429
601 10 VIII 2017 136677.857
320 11 VIII 2017 76497
252 12 VIII 2017 53219.8571
407 13 VIII 2017 86566.5714
330 14 VIII 2017 57112.1429
240 15 VIII 2017 35131
163 16 VIII 2017 22387.2857
225 17 VIII 2017 21222.2857
85 18 VIII 2017 10420.1429
78 19 VIII 2017 5208.14286

Solutions

Expert Solution

Hello

I'm going to use excel to find "best" linear model, by drawing a regression line in each variable's scatterplot diagram.

(a) Dependent Variable : Revenue per day, Independent Variable : No. of theatres

y = 2227.2x - 1000000

R² = 0.4543

(b) Dependent Variable : Revenue per day, Independent Variable : No. of weeks since release

y = -408649x + 7000000

R² = 0.3118

(c) Dependent Variable : Revenue per day, Independent Variable : Film number

y = 84910x + 2000000

R² = 0.0016

(d) Dependent Variable : Revenue per day, Independent Variable : Release Year

y = 18222x - 30000000

R² = 0.0032

R² is a statistical measure of how close your data is, to the plotted regression equation.

and because R² of the variable No. of theatres is maximum, i.e. 0.4543, it will be the best fit.

I hope this solves your query.

Do give a thumbs up if you find this helpful.


Related Solutions

Below gives a data set for movie budgets, and domestic and worldwide box office gross (all...
Below gives a data set for movie budgets, and domestic and worldwide box office gross (all in millions) for several major movies over time. Test the claim, at the � = 0.05 level, that the domestic box office gross has a wider variation than the worldwide box office gross. Movie Data Sheet, h̶t̶t̶p̶s̶:̶/̶/̶w̶w̶w̶.̶s̶t̶a̶t̶c̶r̶u̶n̶c̶h̶.̶c̶o̶m̶/̶a̶p̶p̶/̶i̶n̶d̶e̶x̶.̶p̶h̶p̶?̶d̶a̶t̶a̶i̶d̶=̶2̶1̶8̶8̶6̶8̶4̶ (See below table instead) Note that some of the values for gross are zero. What does this mean and does that effect how you should perform the...
Use "PLUC" data and the description for the dataset on the blackboard. Is there sufficient evidence...
Use "PLUC" data and the description for the dataset on the blackboard. Is there sufficient evidence that the population mean of "PLUC.pre" is different than that of "PLUC.post"? Use R to find the p-value for the test. ***Answer is 8.739E-08*** PLUC.post PLUC.pre 6.483496 8.078464 8.607279 8.539505 12.41932 13.32073 11.72048 8.640824 12.26601 9.979111 11.15877 8.878284 7.527066 10.6834 10.60626 8.728163 6.276827 10.68463 10.1099 11.35035 6.520483 12.71441 11.91813 8.892171 10.66304 8.830107 9.777328 10.50259 9.220989 5.537055 11.79612 8.710783 11.11839 12.75601 8.965028 6.423624 11.48719 3.823811...
Use "PLUC" data and the description for the dataset on the blackboard. Conduct a two sample...
Use "PLUC" data and the description for the dataset on the blackboard. Conduct a two sample independent t test to test if the population means of heights of male is higher than that of female. Use R to calculate the p-value. ***Answer is 0.8974*** sex hgt m 45.68187 m 54.76593 m 43.80479 f 46.1765 m 57.60508 f 40.02826 f 52.50647 f 43.14426 m 45.27999 m 41.95513 m 43.67319 f 58.09449 m 42.47022 f 55.91853 m 44.01857 f 43.25757 m 57.4945...
Use "PLUC" data and the description for the dataset on the blackboard. Conduct a two sample...
Use "PLUC" data and the description for the dataset on the blackboard. Conduct a two sample independent t test to test if the population means of heights of male is higher than that of female. Use R to calculate the p-value. ***Answer is 0.8974*** sex hgt m 45.68187 m 54.76593 m 43.80479 f 46.1765 m 57.60508 f 40.02826 f 52.50647 f 43.14426 m 45.27999 m 41.95513 m 43.67319 f 58.09449 m 42.47022 f 55.91853 m 44.01857 f 43.25757 m 57.4945...
All Time Box Office Revenues Aggregated by Months Rank Month Gross Movies Tracked 1 February, 2009...
All Time Box Office Revenues Aggregated by Months Rank Month Gross Movies Tracked 1 February, 2009 796,343,640 161 2 February, 2010 745,693,066 173 3 February, 2008 659,270,466 193 4 February, 2004 666,141,251 201 5 February, 2007 693,647,238 176 6 February, 2003 613,460,961 207 7 February, 2005 692,957,988 185 8 February, 2006 652,426,175 193 9 February 2002 529,353,345 98 Calculate the mean for the gross revenues. Calculate the mean for the Movies tracked. Calculate the standard deviation for the movies tracked.
Data from fifty of the top box office receipt generating movies are provided in the file....
Data from fifty of the top box office receipt generating movies are provided in the file. Quantitative variables for the movie's release year, inflation- and noninflations-adjusted box office receipts in the United States, budget and the world box office receipts are also included. Use the data visualization methods presented in Chapter 3 to explore these data and discover relationships between the variables. Include the following in your report: 3. Create a frequency distribution, percent frequency distribution, and histogram for the...
Find the five-number summary, and (b) draw a box-and-whisker plot of the data 3 8 8...
Find the five-number summary, and (b) draw a box-and-whisker plot of the data 3 8 8 6 2 9 8 7 9 6 9 5 1 6 2 9 8 7 7 9
Using the data from problem 13, Big Box Office Supply (BBOS) is able to negotiate a...
Using the data from problem 13, Big Box Office Supply (BBOS) is able to negotiate a reduction in the carrying costs to $3.50 per chair, but BBOS’s chair supplier offers a quantity discount of $0.15 per chair if BBOS orders 5,000 chairs at a time rather than the EOQ. Determine the before–tax benefit or loss of accepting the quantity discount. (Assume the carrying cost remains at $3.50 per chair whether or not the discount is taken.) Enter your answer rounded...
Question 2: Consider the following data on 10 students: Observation Weekly Food Expenditure Weekly Income 1...
Question 2: Consider the following data on 10 students: Observation Weekly Food Expenditure Weekly Income 1 80 200 2 70 100 3 60 80 4 80 220 5 100 230 6 70 160 7 50 60 8 70 80 9 70 130 10 80 140 (a) Calculate the values of β0 ̂ and β1 ̂ for the simple linear regression model given by: food =β̂0 +β̂1 incomei + ei (b) Interpret those values in the context of the variable definitions...
To study whether movie ratings and release season influence the box office earnings, you gather data...
To study whether movie ratings and release season influence the box office earnings, you gather data on 70 recent movies. You characterize each movie’s rating (G, PG, PG-13, R, or NC-17) and release season (summer or not summer). Complete the ANOVA table below by filling in the shaded boxes Find the appropriate critical value(s) [?=0.05] Does box office revenue significantly vary with rating, release season, or their interaction? Clearly answer for each SS df MS F Rating 455    Season...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT