In: Finance
On a 5-year, $20K car loan at 4% APR, how much money will you still owe after 3 years? (round to the nearest dollar, no pennies!)
Numeric Response
First we have to find monthly payment and need to use PMT function in EXCEL
=PMT(rate,nper,pv,fv,type)
rate=monthly interest=4%/12=0.333%
nper=number of periods=12*5=60
pv=loan amount=20,000
fv=0
type=0
=PMT(0.333%,60,-20000,0,0)
PMT=$368.33
The monthly payment=$368.33
Now we have make amortization schedule for next 36 payments (3 years). The ending balance at teh end of 36 period is the outstanding amount after 3 years
Periods | Opening balance | Monthly payment | Interest=(Opening balance*(4%/12)) | Principal=monthly payment-Interest | Ending balance=Opening balance-principal |
1 | 20000.00 | 368.33 | 66.67 | 301.66 | 19698.34 |
2 | 19698.34 | 368.33 | 65.66 | 302.67 | 19395.67 |
3 | 19395.67 | 368.33 | 64.65 | 303.68 | 19091.99 |
4 | 19091.99 | 368.33 | 63.64 | 304.69 | 18787.30 |
5 | 18787.30 | 368.33 | 62.62 | 305.71 | 18481.59 |
6 | 18481.59 | 368.33 | 61.61 | 306.73 | 18174.87 |
7 | 18174.87 | 368.33 | 60.58 | 307.75 | 17867.12 |
8 | 17867.12 | 368.33 | 59.56 | 308.77 | 17558.35 |
9 | 17558.35 | 368.33 | 58.53 | 309.80 | 17248.54 |
10 | 17248.54 | 368.33 | 57.50 | 310.84 | 16937.71 |
11 | 16937.71 | 368.33 | 56.46 | 311.87 | 16625.84 |
12 | 16625.84 | 368.33 | 55.42 | 312.91 | 16312.93 |
13 | 16312.93 | 368.33 | 54.38 | 313.95 | 15998.97 |
14 | 15998.97 | 368.33 | 53.33 | 315.00 | 15683.97 |
15 | 15683.97 | 368.33 | 52.28 | 316.05 | 15367.92 |
16 | 15367.92 | 368.33 | 51.23 | 317.10 | 15050.82 |
17 | 15050.82 | 368.33 | 50.17 | 318.16 | 14732.66 |
18 | 14732.66 | 368.33 | 49.11 | 319.22 | 14413.43 |
19 | 14413.43 | 368.33 | 48.04 | 320.29 | 14093.15 |
20 | 14093.15 | 368.33 | 46.98 | 321.35 | 13771.79 |
21 | 13771.79 | 368.33 | 45.91 | 322.42 | 13449.37 |
22 | 13449.37 | 368.33 | 44.83 | 323.50 | 13125.87 |
23 | 13125.87 | 368.33 | 43.75 | 324.58 | 12801.29 |
24 | 12801.29 | 368.33 | 42.67 | 325.66 | 12475.63 |
25 | 12475.63 | 368.33 | 41.59 | 326.74 | 12148.89 |
26 | 12148.89 | 368.33 | 40.50 | 327.83 | 11821.06 |
27 | 11821.06 | 368.33 | 39.40 | 328.93 | 11492.13 |
28 | 11492.13 | 368.33 | 38.31 | 330.02 | 11162.10 |
29 | 11162.10 | 368.33 | 37.21 | 331.12 | 10830.98 |
30 | 10830.98 | 368.33 | 36.10 | 332.23 | 10498.75 |
31 | 10498.75 | 368.33 | 35.00 | 333.33 | 10165.42 |
32 | 10165.42 | 368.33 | 33.88 | 334.45 | 9830.97 |
33 | 9830.97 | 368.33 | 32.77 | 335.56 | 9495.41 |
34 | 9495.41 | 368.33 | 31.65 | 336.68 | 9158.73 |
35 | 9158.73 | 368.33 | 30.53 | 337.80 | 8820.93 |
36 | 8820.93 | 368.33 | 29.40 | 338.93 | 8482.01 |
The outstanding amount after 3 years=$8482.01