Question

In: Physics

A 30.0 gg ball of clay traveling east at 1.00 m/sm/s collides and sticks together with...

A 30.0 gg ball of clay traveling east at 1.00 m/sm/s collides and sticks together with a 40.0 gg ball of clay traveling north at 6.00 m/sm/s .

What is the speed of the resulting ball of clay?

Solutions

Expert Solution

m1 = 30 gm = 0.03 kg

m2 = 40 gm = 0.04 kg

taking east as X-direction, and norht as Y-direction

then

velocity of 1st clay =U1= 1.00 m/sec

velocity of 2nd clay = U2 = 6.00 m/sec

Resolivng the components along x and y direction,

U1x = 1.00 , U1y = 0.0

U2x = 0.00, U2y = 6.00

After the collision, the mass of resultant clay = M = 70 gm = 0.07 Kg

let velocity of the resultant clay = V

and lets its components along x and y direction are Vx and Vy

now applying lwa of conservation of linear momentum in X and Y-directions, we have following equations:

and

Putting the values in above equations:

we get

m/sec

and

m/sec

the resultant velocity (speed) =

Please check the units and modify if necessary


Related Solutions

A 20 g ball of clay traveling east at 2 m/s collides with a 30 g...
A 20 g ball of clay traveling east at 2 m/s collides with a 30 g ball of clay traveling 30° south of west at 1 m/s. What is the velocity of the resulting blob of clay?
In a ballistics test, a 20.0 gg bullet traveling horizontally at 1100 m/sm/s goes through a...
In a ballistics test, a 20.0 gg bullet traveling horizontally at 1100 m/sm/s goes through a 30.0 cmcm -thick 450 kgkg stationary target and emerges with a speed of 900 m/sm/s . The target is free to slide on a smooth horizontal surface. Part A How long is the bullet in the target? Part B What average force does the bullet exert on the target? Part C What is the target's speed just after the bullet emerges?
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at 15.o m/s. The cars stick together. Assume that any otherunbalanced forces are negligible. (Draw Diagrams) (a) What is the speed of the wreckage just after the collision? (b) In what directions does the wreckage move just after the collision? (c) What is the total Kinetick Energy before the collision? (d) What is the total Kinetic Energy after?
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at 15.0 m/s. The cars stick together. Assume that any other unbalanced forces are negligible. (Draw Diagrams) (a) What is the speed of the wreckage just after the collision? (b) In what direction does the wreckage move just after the collision? (c) What is the total Kinetic Energy before the collision? (d) What is the total Kinetic Energy after?
A 3.71 kg ball of clay is traveling straight north with a speed of 24.8 m/s,...
A 3.71 kg ball of clay is traveling straight north with a speed of 24.8 m/s, collides with a 3.65 kg ball of clay travelling strait east with a speed of 23.4 m/s. What is the speed of this new ball of clay after its collision? (I got 17.1 m/s) What direction is it traveling, given as a degree north of east?
Ball 1, with a mass of 130 g and traveling at 13 m/s , collides head...
Ball 1, with a mass of 130 g and traveling at 13 m/s , collides head on with ball 2, which has a mass of 310 g and is initially at rest. A)What is the final velocity of the ball 1 if the collision is perfectly elastic. B)What is the final velocity of the ball 2 if the collision is perfectly elastic. C)What is the final velocity of the ball 1 if the collision is perfectly inelastic. D)What is the...
Ball 1, with a mass of 110 g and traveling at 15 m/s , collides head...
Ball 1, with a mass of 110 g and traveling at 15 m/s , collides head on with ball 2, which has a mass of 340 g and is initially at rest. What is the final velocity of the ball 1 if the collision is perfectly elastic? What is the final velocity of the ball 2 if the collision is perfectly elastic? What is the final velocity of the ball 1 if the collision is perfectly inelastic? What is the...
Ball 1, with a mass of 159 g and traveling at 11.0 m/s , collides head...
Ball 1, with a mass of 159 g and traveling at 11.0 m/s , collides head on with ball 2, which has a mass of 324 g and is initially at rest. Assume that ball 1 is traveling to the right before the collision and that the collision is one dimensional. What is the final velocity of ball 1 if the collision is perfectly elastic? Answer: -3.76 m/s What is the final velocity of ball 2 if the collision is...
Ball 1, with a mass of 140 g and traveling at 13 m/s , collides head...
Ball 1, with a mass of 140 g and traveling at 13 m/s , collides head on with ball 2, which has a mass of 320 g and is initially at rest. What is the final velocity of the ball 1 if the collision is perfectly elastic? Express your answer in meters per second. What is the final velocity of the ball 2 if the collision is perfectly elastic? What is the final velocity of the ball 1 if the...
Ball 1, with a mass of 110g and traveling at 10m/s, collides head on with ball...
Ball 1, with a mass of 110g and traveling at 10m/s, collides head on with ball 2, which has a mass of 340g and is initially at rest. What are the final velocities of each ball if the collision is perfectly elastic? What are the final velocities of each ball if the collision is perfectly inelastic?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT