Question

In: Physics

Ball 1, with a mass of 110 g and traveling at 15 m/s , collides head...

Ball 1, with a mass of 110 g and traveling at 15 m/s , collides head on with ball 2, which has a mass of 340 g and is initially at rest.

What is the final velocity of the ball 1 if the collision is perfectly elastic?

What is the final velocity of the ball 2 if the collision is perfectly elastic?

What is the final velocity of the ball 1 if the collision is perfectly inelastic?

What is the final velocity of the ball 2 if the collision is perfectly inelastic?

Solutions

Expert Solution

m1 = 110 kg                   m2 = 340 kg


speeds before collision


u1 = 15 m/s                   u2 = 0 m/s

speeds after collision


v1 = ?                         v2 = ?


initial momentum before collision


Pi = m1*u1 + m2*u2

after collision final momentum

Pf = m1*v1 + m2*v2

from moentum conservation


total momentum is conserved

Pf = Pi


m1*u1 + m2*u2 = m1*v1 + m2*v2 .....(1)


from energy conservation


total kinetic energy before collision = total kinetic energy after collision


KEi = 0.5*m1*u1^2 + 0.5*m2*u2^2


KEf =   0.5*m1*v1^2 + 0.5*m2*v2^2


KEi = KEf


0.5*m1*u1^2 + 0.5*m2*u2^2 = 0.5*m1*v1^2 + 0.5*m2*v2^2 .....(2)

solving 1&2


we get

v1 = [ ((m1-m2)*u1) + (2*m2*u2) ] /(m1+m2)

v2 = [ ((m2-m1)*u2) + (2*m1*u1) ] /(m1+m2)


v1 = [ ((110-340)*15) + (2*340*0) ] /(110+340)

v1 = -7.67 m/s

v2 = [ ((340-110)*0) + (2*110*15) ] /(110+340)


v2 = 7.33 m/s

++++++++++++++


for perfect inelastic


V1 = V2 = V

Pf = (m1+m2)*V

Pf = Pi


(110+340)*V = (110*15)

V = 3.67 m/s

v1 = 3.67 m/s


v2 = 3.67 m/s


Related Solutions

Ball 1, with a mass of 130 g and traveling at 13 m/s , collides head...
Ball 1, with a mass of 130 g and traveling at 13 m/s , collides head on with ball 2, which has a mass of 310 g and is initially at rest. A)What is the final velocity of the ball 1 if the collision is perfectly elastic. B)What is the final velocity of the ball 2 if the collision is perfectly elastic. C)What is the final velocity of the ball 1 if the collision is perfectly inelastic. D)What is the...
Ball 1, with a mass of 159 g and traveling at 11.0 m/s , collides head...
Ball 1, with a mass of 159 g and traveling at 11.0 m/s , collides head on with ball 2, which has a mass of 324 g and is initially at rest. Assume that ball 1 is traveling to the right before the collision and that the collision is one dimensional. What is the final velocity of ball 1 if the collision is perfectly elastic? Answer: -3.76 m/s What is the final velocity of ball 2 if the collision is...
Ball 1, with a mass of 140 g and traveling at 13 m/s , collides head...
Ball 1, with a mass of 140 g and traveling at 13 m/s , collides head on with ball 2, which has a mass of 320 g and is initially at rest. What is the final velocity of the ball 1 if the collision is perfectly elastic? Express your answer in meters per second. What is the final velocity of the ball 2 if the collision is perfectly elastic? What is the final velocity of the ball 1 if the...
Ball 1, with a mass of 110g and traveling at 10m/s, collides head on with ball...
Ball 1, with a mass of 110g and traveling at 10m/s, collides head on with ball 2, which has a mass of 340g and is initially at rest. What are the final velocities of each ball if the collision is perfectly elastic? What are the final velocities of each ball if the collision is perfectly inelastic?
Ball 1, with a mass of 100g and traveling at 12.0m/s , collides head on with...
Ball 1, with a mass of 100g and traveling at 12.0m/s , collides head on with ball 2, which has a mass of 340gand is initially at rest. A. What are final velocities of each ball if the collision is perfectly elastic? (vfx)1 , (vfx)2 B. What are final velocities of each ball if the collision is perfectly inelastic?
Ball 1, with a mass of 120g and traveling at 15m/s , collides head on with...
Ball 1, with a mass of 120g and traveling at 15m/s , collides head on with ball 2, which has a mass of 310g and is initially at rest. What are the final velocities of each ball if the collision is perfectly elastic?
A 20 g ball of clay traveling east at 2 m/s collides with a 30 g...
A 20 g ball of clay traveling east at 2 m/s collides with a 30 g ball of clay traveling 30° south of west at 1 m/s. What is the velocity of the resulting blob of clay?
A 100 g ball moving to the right at 4.0 m/s collides head-on with a 200...
A 100 g ball moving to the right at 4.0 m/s collides head-on with a 200 g ball that is moving to the left at 3.0 m/s. If the collision is perfectly elastic, what are the speeds of each ball after the collision? (Vfx)1 and (Vfx)2 What is the direction of 100-g ball after the collision? upward, downard, to the right, to the left? What is the direction of 200-g ball after the collision? upward, downward, to the right, to...
A ball of mass and velocity collides head-on with a ball of mass  that is initially at...
A ball of mass and velocity collides head-on with a ball of mass  that is initially at rest. No external forces act on the balls. Show what is conserved through the appropriate formula if the collision is elastic. b. What are the velocities of the balls after the collision?
A 1,4-kg object traveling at 5,5 m/s collides head-on with a 3-kg object traveling in the...
A 1,4-kg object traveling at 5,5 m/s collides head-on with a 3-kg object traveling in the opposite direction at 3,9 m/s. If the collision is perfectly elastic, what is the final speed of the 1,4-kg object? Answer in two decimal places. The answer is supposed to be 7,32. Why is that?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT