Question

In: Math

Assume that a simple random sample has been selected from a normally distributed population and test...

Assume that a simple random sample has been selected from a normally distributed population and test the given claim. A simple random sample of 25 filtered 100 mm cigarettes is​ obtained, and the tar content of each cigarette is measured. The sample has a mean of 20.2 mg and a standard deviation of 3.81 mg. Use a 0.05 significance level to test the claim that the mean tar content of filtered 100 mm cigarettes is less than 21.1 mg, which is the mean for unfiltered king size cigarettes.

What are the​ hypotheses?

A. H0​: μ>21.1 mg

H1​: μ<21.1 mg

B.H0​: μ=21.1 mg

H1​: μ<21.1 mg

C.H0​: μ<21.1 mg

   H1​: μ ≥ 21.1 mg

D. H0​: μ =21.1 mg

H1​: μ ≥ 21.1mg

Identify the test statistic.

t = _________

Identify the​ P-value.

The​ P-value is ___________

State the final conclusion that addresses the original claim. Choose the correct answer below.

A. Fail to reject H0. There is insufficient evidence to support the claim that the mean tar content of filtered 100 mm cigarettes is less than 21.1 mg.

B. Reject H0. There is insufficient evidence to support the claim that the mean tar content of filtered 100 mm cigarettes is less than 21.1 mg.

C. Reject H0. There is sufficient evidence to support the claim that the mean tar content of filtered 100 mm cigarettes is less than 21.1 mg.

D.Fail to reject H0. There is sufficient evidence to support the claim that the mean tar content of filtered 100 mm cigarettes is less than 21.1 mg.

What do the results​ suggest, if​ anything, about the effectiveness of the​ filters?

A.The results suggest that the filters are effective.

B.The results suggest that the filtered cigarettes have the same tar content as unfiltered king size cigarettes.

C.The results do not suggest that the filters are effective.

D.The results suggest that the filters increase the tar content.

E.The results are inconclusive because the sample size is less than 30.

Solutions

Expert Solution

Solution :

= 21.1

=20.2

S= 3.81

n = 25

This is the left tailed test .

The null and alternative hypothesis is ,

B) H0 :   = 21.1

Ha : < 21.1

Test statistic = t

= ( - ) / s  / n

= (20.2- 21.1) /3.81 / 25

= -1.18

P (Z < ) = 0.1246

P-value = 0.1246

= 0.05  

p= 0.1246 ≥ 0.05, it is concluded that the null hypothesis is not rejected.

A. Fail to reject H0. There is insufficient evidence to support the claim that the mean tar content of filtered 100 mm cigarettes is less than 21.1 mg.

C.The results do not suggest that the filters are effective.


Related Solutions

Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. A safety administration conducted crash tests of child booster seats for cars. Listed below are results from those​ tests, with the measurements given in hic​ (standard head injury condition​ units). The safety requirement is that the hic measurement should be less than...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. In a manual on how to have a number one​ song, it is stated that a song must be no longer than 210 seconds. A simple random sample of 40 current hit songs results in a mean length of 218.1 sec and...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. A coin mint has a specification that a particular coin has a mean weight of 2.5 g. A sample of 32 coins was collected. Those coins have a mean weight of 2.49543 g and a standard deviation of 0.01598 g. Use a...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. A safety administration conducted crash tests of child booster seats for cars. Listed below are results from those​ tests, with the measurements given in hic​ (standard head injury condition​ units). The safety requirement is that the hic measurement should be less than...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. A safety administration conducted crash tests of child booster seats for cars. Listed below are results from those​ tests, with the measurements given in hic​ (standard head injury condition​ units). The safety requirement is that the hic measurement should be less than...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the claim, the null and alternative hypotheses, test statistic, critical value(s), P-value and compare to alpha, and state the final conclusion that addresses the original claim. INCLUDE A DRAWING OF THE NORMAL CURVE THAT SHOWS THE LOCATION OF THE CRITICAL AREAS AND THE LOCATION OF THE TEST STATISTIC. DO THIS FOR PROBLEMS 1 – 5. 2. (40 points) A golf...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the claim, the null and alternative hypotheses, test statistic, critical value(s), P-value and compare to alpha, and state the final conclusion that addresses the original claim. INCLUDE A DRAWING OF THE NORMAL CURVE THAT SHOWS THE LOCATION OF THE CRITICAL AREAS AND THE LOCATION OF THE TEST STATISTIC. DO THIS FOR PROBLEMS 1 – 5. 1. (40 points) A certain...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative? hypotheses, test? statistic, P-value, and state the final conclusion that addresses the original claim. In a manual on how to have a number one? song, it is stated that a song must be no longer than 210 seconds. A simple random sample of 40 current hit songs results in a mean length of 233.1 sec and...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. A safety administration conducted crash tests of child booster seats for cars. Listed below are results from those​ tests, with the measurements given in hic​ (standard head injury condition​ units). The safety requirement is that the hic measurement should be less than...
Assume that a simple random sample has been selected from a normally distributed population and test...
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Use either the traditional method or P-value method as indicated. Identify the null and alternative hypotheses, test statistic, critical value(s) or P-value (or range of P-values) as appropriate, and state the final conclusion that addresses the original claim. Use a significance level of α = 0.01 to test the claim that μ > 2.85. The sample data consist of 9 scores...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT