Question

In: Finance

Problem 17-30 Black–Scholes and Dividends In addition to the five factors discussed in the chapter, dividends...

Problem 17-30 Black–Scholes and Dividends

In addition to the five factors discussed in the chapter, dividends also affect the price of an option. The Black–Scholes option pricing model with dividends is:
  
C=S × edt × N(d1) − E × eRt × N(d2)C=S⁢ × e−dt⁢ × N(d1)⁢ − E⁢ × e−Rt⁢ × N(d2)

d1= [ln(S  /E ) +(Rd+σ2 / 2) × t ] (σ − t√) d1= [ln(S  /E⁢ ) +(R⁢−d+σ2⁢ / 2) × t ] (σ⁢ − t) 

d2=d1−σ × t√d2=d1−σ⁢ × t
  
All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock.
  
A stock is currently priced at $81 per share, the standard deviation of its return is 50 percent per year, and the risk-free rate is 4 percent per year, compounded continuously. What is the price of a call option with a strike price of $77 and a maturity of six months if the stock has a dividend yield of 2 percent per year? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.)
  
Price of call option           $

Solutions

Expert Solution

Answer ) in the current concept , the price of option contract has been calculated by use of Black-Scholes model for eurpean call valuation with dividend yield of stock .

Input data ,

Stock Price now (S) 81
Exercise Price of Option (E) 77
Number of periods to Exercise in years (t) 0.50
Compounded Risk-Free Interest Rate (r) 4.00%
Standard Deviation (annualized s) 50.00%
Devidend yield (d) 2%

The output data with spread sheet formula

Output Data Spread sheet Formula
Present Value of Exercise Price (PV(K)) E*EXP(-r*t) 75.47529784
s*t^.5 s*t^0.5 0.353553391
d1 (LN(s/e)+(r-d+s*s/2)*t)/(s*t^0.5) 0.348303074
d2 d1-s*t^0.5 -0.005250316
Delta N(d1) Normal Cumulative Density Function NORMDIST(d1,0,1,TRUE) 0.636193707
N(d2)*PV(K) NORMDIST(d2,0,1,TRUE)*E*EXP(-r*t) 37.57956111
Value of Call NORMDIST(d1,0,1,TRUE)*S- NORMDIST(d2,0,1,TRUE)*E*EXP(-r*t) $13.95

Related Solutions

In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock. The put–call parity condition is also altered when dividends are paid. The dividend-adjusted put–call parity formula is: S×e−dt+P=E×e−Rt+CS×e−dt+P=E×e−Rt+C where...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock.    A stock is currently priced at $87 per share, the standard deviation of its return is 42 percent...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock. The put–call parity condition is also altered when dividends are paid. The dividend-adjusted put–call parity formula is: S×e−dt+P=E×e−Rt+CS×e−dt+P=E×e−Rt+C where...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock.    A stock is currently priced at $82 per share, the standard deviation of its return is 48 percent...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock. The put–call parity condition is also altered when dividends are paid. The dividend-adjusted put–call parity formula is: S×e−dt+P=E×e−Rt+CS×e−dt+P=E×e−Rt+C where...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is: C=S×e−dt×N(d1)−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√) d2=d1−σ×t√ All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock. The put–call parity condition is also altered when dividends are paid. The dividend-adjusted put–call parity formula is: S×e−dt+P=E×e−Rt+C where d is again the continuously compounded dividend yield....
In addition to the five factors, dividends also affect the price of an option. The Black-Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black-Scholes Option Pricing Model with dividends is: C=S×e−dt×N(d1)−E×e−Rt×N(d2) d1= [ln(S  /E ) +(R−d+σ2/2)×t ] (σ×t√)  d2=d1−σ×t√ All of the variables are the same as the Black-Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock. A stock is currently priced at $80 per share, the standard deviation of its return is 53 percent per year, and...
In addition to the five factors, dividends also affect the price of an option. The Black-Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black-Scholes Option Pricing Model with dividends is: C=S×e−dt×N(d1)−E×e−Rt×N(d2) d1= [ln(S  /E ) +(R−d+σ2/2)×t ] (σ×t√)  d2=d1−σ×t√ All of the variables are the same as the Black-Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock. The put-call parity condition is also altered when dividends are paid. The dividend-adjusted put-call parity formula is: S×e−dt+P=E×e−Rt+C where d is...
In addition to the five factors discussed in the chapter, dividends also affect the price of...
In addition to the five factors discussed in the chapter, dividends also affect the price of an option. The Black–Scholes option pricing model with dividends is:    C=S × e−dt × N(d1) − E × e−Rt × N(d2)C=S⁢ × e−dt⁢ × N(d1)⁢ − E⁢ × e−Rt⁢ × N(d2) d1= [ln(S  /E ) +(R−d+σ2 / 2) × t ] (σ − t√) d1= [ln(S  /E⁢ ) +(R⁢−d+σ2⁢ / 2) × t ] (σ⁢ − t)  d2=d1−σ × t√d2=d1−σ⁢ × t   ...
In addition to the five factors discussed in the chapter, dividends also affect the price of...
In addition to the five factors discussed in the chapter, dividends also affect the price of an option. The Black-Scholes option pricing model with dividends is: C=S × e−dt × N(d1) − E × e−Rt × N(d2) d1= [ln(S  /E ) +(R−d+σ2 / 2) × t ] (σ − t√)  d2=d1−σ × t√ All of the variables are the same as the Black-Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT