Question

In: Physics

A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative...

A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 3.52 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 2600 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 5.40 V/m, (b) in the negative z direction and has a magnitude of 5.40 V/m, and (c) in the positive x direction and has a magnitude of 5.40 V/m?

Solutions

Expert Solution


Related Solutions

A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative...
A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 3.50 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 1830 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 5.10 V/m, (b)...
An alpha particle travels at a velocity of magnitude 430 m/s through a uniform magnetic field...
An alpha particle travels at a velocity of magnitude 430 m/s through a uniform magnetic field of magnitude 0.058 T. (An alpha particle has a charge of charge of +3.2 × 10-19 C and a mass 6.6 × 10-27 kg) The angle between the particle's direction of motion and the magnetic field is 78°. What is the magnitude of (a) the force acting on the particle due to the field, and (b) the acceleration of the particle due to this...
A proton moves through a uniform magnetic field given by  B→=(5.52i^−10.0j^+20.9k^) mT. At time t1, the proton...
A proton moves through a uniform magnetic field given by  B→=(5.52i^−10.0j^+20.9k^) mT. At time t1, the proton has a velocity given by   v→=vxi^+vyj^+(2.19⁢  km/s)k^ and the magnetic force on the proton is   F→B=(3.69×10−17⁢ N)i^+(2.03×10−17⁢ N)j^ . (a) At that instant, what is vx? (b) At that instant, what is vy? (a) _ m/s (b) _ m/s
A) An electron and proton enter a region of uniform magnetic field, compare the magnitudes of...
A) An electron and proton enter a region of uniform magnetic field, compare the magnitudes of the forces and accelerations each experience. Explain. Additionaly compare the directions of the forces if the proton and electron are moving in the same direction. (b) • How would you orient a square current loop in a uniform magnetic field so that there is no torque on the loop? • How would the orientation change to maximize the torque on the loop? • In...
A proton moves perpendicular to a uniform magnetic field B with arrow at a speed of...
A proton moves perpendicular to a uniform magnetic field B with arrow at a speed of 2.20 107 m/s and experiences an acceleration of 1.90 1013 m/s2 in the positive x-direction when its velocity is in the positive z-direction. Determine the magnitude and direction of the field. magnitude_____T direction : +x, -x, +y, -y, +z, -z   
A proton and an electron traveling at the same speed enter a uniform magnetic field. The...
A proton and an electron traveling at the same speed enter a uniform magnetic field. The velocity vector of each particle is perpendicular to the magnetic field. Which of the following statements best describes their motions? The paths of both particles will curve in the same direction, but the radius of the electron's trajectory will be much larger than the radius of the proton's trajectory. The paths of both particles will curve in same direction, but the radius of the...
A proton is projected in the positive x direction into a region of uniform electric field...
A proton is projected in the positive x direction into a region of uniform electric field E with arrow = (-6.20 ✕ 105) î N/C at t = 0. The proton travels 7.40 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude _________m/s2 direction _________ (b) Determine the initial speed of the proton. magnitude _________m/s direction ___________ (c) Determine the time interval over which the proton comes to rest. ________s
An electron is initially is at rest in a uniform electric field E in the negative...
An electron is initially is at rest in a uniform electric field E in the negative y direction and a uniform magnetic field B in the negative z direction. Solve the equations of motion given by the Lorentz Force and show the trajectory of the electron is found as: x(t)= (cE / wB) * (wt - sintwt) y(T)=(cE / wB) * (1 - coswt) where w=(eB/mc)
A proton is acted on by a uniform electric field of magnitude 313 N/C pointing in...
A proton is acted on by a uniform electric field of magnitude 313 N/C pointing in the negative z-direction. The particle is initially at rest. (a) In what direction will the charge move? (b) Determine the work done by the electric field when the particle has moved through a distance of 3.75 cm from its initial position. ____________J (c) Determine the change in electric potential energy of the charged particle. ___________J (d) Determine the speed of the charged particle. _______m/s
5. A proton and an electron are in a uniform electric field with magnitude 45 V/C....
5. A proton and an electron are in a uniform electric field with magnitude 45 V/C. Which particle has the larger magnitude acceleration, and what is the magnitude of the acceleration? (e = 1.6×10−19 C, mp = 1.67×10−27 kg, me = 9.11×10−31 kg) A. the electron, 7.9×1012 m/s2 B. the proton, 4.3×1013 m/s2 C. the proton, 4.3×109 m/s2 D. the electron, 7.9×108 m/s2 E. the electron, 7.9×1010 m/s2 6. A +2q point charge is located at the origin (x =...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT