In: Math
Given,
proportion = 0.495 . n = 525
A)
Among 525, number of the said it's a red flag = 525 * 0.495
= 259.875 ( 260 Rounded to nearest integer)
B)
99% confidence interval for proportion p is
- Z/2 * sqrt( ( 1 - ) / n) < p < + Z/2 * sqrt( ( 1 - ) / n)
0.495 - 2.5758 * sqrt( 0.495 * 0.505 / 525) < p < 0.495 + 2.5758 * sqrt( 0.495 * 0.505 / 525)
0.439 < p < 0.551
99% CI is ( 0.439 , 0.551)
c)
80% confidence interval for p is
- Z/2 * sqrt( ( 1 - ) / n) < p < + Z/2 * sqrt( ( 1 - ) / n)
0.495 - 1.2816 * sqrt( 0.495 * 0.505 / 525) < p < 0.495 + 1.2816 * sqrt( 0.495 * 0.505 / 525)
0.467 < p < 0.523
80% CI is ( 0.467 , 0.523 )
d)
Confidence level of 99% have wider interval than 80% confidence level.
Because nterval width for 99% level increases for higher accuracy of confidence level,
that is true value of proportion is more likely to be within the confidence interval.