Question

In: Math

Let X1, X2, X3, X4, X5 be independent continuous random variables having a common cdf F...

Let X1, X2, X3, X4, X5 be independent continuous random variables having a common cdf F and pdf f, and set p=P(X1 <X2 <X3 < X4 < X5).

(i) Show that p does not depend on F. Hint: Write I as a five-dimensional integral and make the change of variables ui = F(xi), i = 1,··· ,5.

(ii) Evaluate p.
(iii) Give an intuitive explanation for your answer to (ii).

Solutions

Expert Solution


Related Solutions

Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
Consider independent random variables X1, X2, and X3 such that X1 is a random variable having...
Consider independent random variables X1, X2, and X3 such that X1 is a random variable having mean 1 and variance 1, X2 is a random variable having mean 2 and variance 4, and X3 is a random variable having mean 3 and variance 9. (a) Give the value of the variance of X1 + (1/2)X2 + (1/3)X3 (b) Give the value of the correlation of Y = X1- X2 and Z = X2 + X3.
Let X1, X2, X3, X4, X5, and X6 denote the numbers of blue, brown, green, orange,...
Let X1, X2, X3, X4, X5, and X6 denote the numbers of blue, brown, green, orange, red, and yellow M&M candies, respectively, in a sample of size n. Then these Xi's have a multinomial distribution. Suppose it is claimed that the color proportions are p1 = 0.22, p2 = 0.13, p3 = 0.18, p4 = 0.2, p5 = 0.13, and p6 = 0.14. (a) If n = 12, what is the probability that there are exactly two M&Ms of each...
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove...
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove that U is a subspace of F4. (b) Find a basis for U and prove that dimU = 2. (c) Complete the basis for U in (b) to a basis of F4. (d) Find an explicit isomorphism T : U →F2. (e) Let T as in part (d). Find a linear map S: F4 →F2 such that S(u) = T(u) for all u ∈...
Using Y as the dependent variable and X1, X2, X3, X4 and X5 as the explanatory...
Using Y as the dependent variable and X1, X2, X3, X4 and X5 as the explanatory variables, formulate an econometric model for data that is (i) time series data (ii) cross-sectional data and (iii) panel data – (Hint: please specify the specific model here not its general form).
Let X1, X2, X3, and X4 be a random sample of observations from a population with...
Let X1, X2, X3, and X4 be a random sample of observations from a population with mean ? and variance ?2. Consider the following two point estimators of ?: b1= 0.30 X1 + 0.30 X2 + 0.30 X3 + 0.30 X4 and b2= 0.20 X1 + 0.40 X2 + 0.40 X3 + 0.20 X4 . Which of the following constraints is true? A. Var(b1)/Var(b2)=0.76 B. Var(b1)Var(b2) C. Var(b1)=Var(b2) D. Var(b1)>Var(b2)
Suppose that X1,X2,X3,X4 are independent random variables with common mean E(Xi) =μ and variance Var(Xi) =σ2....
Suppose that X1,X2,X3,X4 are independent random variables with common mean E(Xi) =μ and variance Var(Xi) =σ2. LetV=X2−X3+X4 and W=X1−2X2+X3+ 4X4. (a) Find E(V) and E(W). (b) Find Var(V) and Var(W). (c) Find Cov(V,W).( d) Find the correlation coefficientρ(V,W). Are V and W independent?
Suppose that X1,X2,X3,X4 are independent random variables with common mean E(Xi) =μ and variance Var(Xi) =σ2....
Suppose that X1,X2,X3,X4 are independent random variables with common mean E(Xi) =μ and variance Var(Xi) =σ2. LetV=X2−X3+X4 and W=X1−2X2+X3+ 4X4. (a) Find E(V) and E(W). (b) Find Var(V) and Var(W). (c) Find Cov(V,W).( d) Find the correlation coefficientρ(V,W). Are V and W independent?
let X1, X2, X3 be random variables that are defined as X1 = θ + ε1...
let X1, X2, X3 be random variables that are defined as X1 = θ + ε1 X2 = 2θ + ε2 X3 = 3θ + ε3 ε1, ε2, ε3 are independent and the mean and variance are the following random variable E(ε1) = E(ε2) = E(ε3) = 0 Var(ε1) = 4 Var(ε2) = 6 Var(ε3) = 8 What is the Best Linear Unbiased Estimator(BLUE) when estimating parameter θ from the three samples X1, X2, X3
Suppose that X1, X2, X3, X4 is a simple random (independent and identically distributed) sample of...
Suppose that X1, X2, X3, X4 is a simple random (independent and identically distributed) sample of size 4 from a normal distribution with an unknown mean μ but a known variance 9. Suppose further that Y1, Y2, Y3, Y4, Y5 is another simple random sample (independent from X1, X2, X3, X4 from a normal distribution with the same mean   μand variance 16. We estimate μ with U = (bar{X}+bar{Y})/2. where bar{X} = (X1 + X2 + X3 + X4)/4 bar{Y}...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT