Question

In: Physics

A torque is applied to a long thin rod making it rotate with an angular acceleration...

A torque is applied to a long thin rod making it rotate with an angular acceleration of 5.10 rad/s2 about an axis through its center and perpendicular to its length (see the Figure (a) below). If the same torque is now applied to make the rod rotate about an axis about one end perpendicular to its length (see Figure (b) below), determine the new angular acceleration of the rod.
rad/s2

Solutions

Expert Solution

When rod is rotating about an axis through its center and perpendicular to its length, then moment of inertia of rod is given by:

I1 = M*L^2/12

Now when rod is rotating about an axis about one end perpendicular to its length, then moment of inertia of rod is given by:

I2 = M*L^2/3

Now given that same torque is applied on rod in both case, So

1 = 2

I1*1 = I2*2

2 = 1*(I1/I2)

1 = Angular acceleration in 1st case = 5.10 rad/sec^2

So,

2 = 5.10*(ML^2/12/(ML^2/3))

2 = 5.10*(3/12) = 5.10*(1/4)

2 = 1.275 rad/sec^2

In three significant figures if required, 2 = 1.28 rad/sec^2

Let me know if you've any query.


Related Solutions

The power supplied by a torque, ?, to rotate an object at angular frequency, ?, is...
The power supplied by a torque, ?, to rotate an object at angular frequency, ?, is P = ??. A common car engine produces ? = 3000Nm at ? = 3000 RPM (rotations per minute). Suppose you want to create an electric car that runs on a battery and electric motor. Typically, electric car motors utilize a current of 100A and have a cross sectional area of 0.5m2. Suppose also that the number of wire turns in the coil of...
Describe rotational motion (angular displacement, angular velocity, angular acceleration, torque, moment of inertia, etc.). Use equations...
Describe rotational motion (angular displacement, angular velocity, angular acceleration, torque, moment of inertia, etc.). Use equations and words.
The wheel of an engine starts to rotate from rest with uniform angular acceleration. It accelerates...
The wheel of an engine starts to rotate from rest with uniform angular acceleration. It accelerates angularly for an unknown time (t1) until reaching an angular velocity of 45.13 rad / s, then maintains that angular velocity constant for 37.8 s. The total angle traveled by the wheel in total is 2398.61 rad. a) What is the angular acceleration with which the wheel began to rotate? b) What is the time (t1) that the wheel was accelerating? c) What is...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a horizontal plane about a vertical axis on the left end of the rod. The rod is at rest when a 10.0-g bullet traveling in the horizontal plane of the rod is fired into the right end of the rod at an angle 90o with the rod. The bullet lodges in the rod and the angular velocity of the rod is 10 rad/s immediately after...
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod uniformly charged to - 15.0 nC are placed side by side, 4.20 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 5.00 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 5.00 nC and a 10-cm-long thin plastic rod uniformly charged to - 5.00 nC are placed side by side, 4.40 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 14.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 14.0 nC and a 10-cm-long thin plastic rod uniformly charged to - 14.0 nC are placed side by side, 4.40 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod uniformly charged to - 7.00 nCnC are placed side by side, 4.10 cmcm apart. What are the electric field strengths E1E1 to E3E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1, E2, and E3?
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod uniformly charged to -15.0 nC are placed side by side, 3.50 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod uniformly charged to - 7.00 nCnC are placed side by side, 4.10 cmcm apart. What are the electric field strengths E1E1 to E3E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1, E2, and E3.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT