Question

In: Biology

How does each molecule of NADH generate 2.5 ATPs after electron transport and oxidative phosphorylation? Why...

How does each molecule of NADH generate 2.5 ATPs after electron transport and oxidative phosphorylation?

Why does FADH2 only generate 1.5?

Solutions

Expert Solution

NADH produces 2.5 ATP during the ETC (Electron Transport Chain) with oxidative phosphorylation because NADH gives up its electron to Complex I, which is at a higher energy level than the other Complexes. When Complex I transfers the electron to Complex III, energy is given off to pump protons across the membrane, creating a gradient. The electron moves again to Complex IV and again pumps more electrons across the membrane. Because NADH started with Complex I, it had more chances to pumps more protons across the gradient, which powers the ATP synthase and gives us 3 ATP per molecule of NADH.

FADH2 produces 1.5 ATP during the ETC because it gives up its electron to Complex II, bypassing Complex I. By bypassing Complex I, we missed a chance to pump protons across the membrane, so less protons have been pumped by the time we get to Complex IV. Protons still have been pumped, enough to fuel 1.5 ATP created by ATP synthase.


Related Solutions

how does Electron Transport and Oxidative Phosphorylation,  the storage mechanisms and control in carbohydrate metabolism and photosynthesis...
how does Electron Transport and Oxidative Phosphorylation,  the storage mechanisms and control in carbohydrate metabolism and photosynthesis relate to biochemistry?
Which molecule(s) provide high energy electrons to the electron transport chain in oxidative phosphorylation? a. ATP...
Which molecule(s) provide high energy electrons to the electron transport chain in oxidative phosphorylation? a. ATP b. NADH c. FADH2 d. a and b e. b and c For every molecule of pyruvate oxidized in aerobic cellular respiration ____________ is(are) produced. a. one ethanol and one CO2 molecule b. one acetyl CoA molecule c. one acetyl CoA and one CO2 molecule d. three ATP molecules
For ATP synthesis by oxidative phosphorylation, the P/O ratios of NADH and FADH2 are ~2.5 and...
For ATP synthesis by oxidative phosphorylation, the P/O ratios of NADH and FADH2 are ~2.5 and ~1.5, respectively. Explain how mitochondrial electron transport, ATP synthase, and other membrane processes account for these numbers?
Art-Ranking Activity: The electron transport chain and oxidative phosphorylation
Art-Ranking Activity: The electron transport chain and oxidative phosphorylation
Which of the following complexes involved in electron transport and oxidative phosphorylation does NOT directly impact...
Which of the following complexes involved in electron transport and oxidative phosphorylation does NOT directly impact the pH of mitochondrial intermembrane space? A) Complex I B) Complex II C) Complex III D) Complex IV E) Complex V
Which complex involved in electron transport and oxidative phosphorylation does not directly affect the pH of...
Which complex involved in electron transport and oxidative phosphorylation does not directly affect the pH of the mitochondiral intermembrane space? A) Complex I B) Complex II C) Complex III D) Complex IV D) Complex IV E) Complex V
What is the order of electron flow in oxidative phosphorylation for the electrons coming from NADH?...
What is the order of electron flow in oxidative phosphorylation for the electrons coming from NADH? Additionally, What components in this electron flow are important for the production of ATP and what do these components do that is important?
Explain the difference between substrate-level phosphorylation and oxidative phosphorylation? How many ATPs (net) are made by...
Explain the difference between substrate-level phosphorylation and oxidative phosphorylation? How many ATPs (net) are made by substrate-level phosphorylation vs oxidative phosphorylation in aerobic respiration? What role does chemiosmosis play?
What is the production of ATP both directly and through electron transport/oxidative phosphorylation when: (i)       one...
What is the production of ATP both directly and through electron transport/oxidative phosphorylation when: (i)       one mole of glucose is converted to two moles of acetyl CoA. (ii)       one mole of acetyl CoA is metabolised to CO2 and H2O via the citric acid cycle. (iii)       one mole of glucose is completely metabolised to CO2 and H2O via glycolysis, the pyruvate dehydrogenase reaction and the citric acid cycle. How do you calculate this?
From these pathways, the TCA cycle, electron transport chain, oxidative phosphorylation, β-oxidation for fatty acid degradation,...
From these pathways, the TCA cycle, electron transport chain, oxidative phosphorylation, β-oxidation for fatty acid degradation, ketone body metabolism, and lipid biosynthesis which ones are affected by low oxygen? Where in the cell do these pathways occur? Next, explain how reduced oxygen slows each pathway(s) identified. Once oxygen is no longer limiting, energy production resumes. Explain how the concentration of ATP increases with the availability of oxygen (detailed pathways and structures are NOT required). Next explain in detail how ATP...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT