Question

In: Physics

In this lab, an apple is released from rest and falls freely until it lands in...

In this lab, an apple is released from rest and falls freely until it lands in a bowl. Watch the video here. We will be measuring y (the vertical position coordinate) as a function of time t. Notation: y0 is the value of y at t = 0; vy is the y-component of the velocity; vy0 is the value of vy at t = 0; ay is the y-component of the acceleration. The +y-direction is up. Assuming air resistance is negligible:

Which of these is the expected form of the equation for vy(t)?   (Click to select)

(a) vy(t) = v0yt + y0
(b) vy(t) = ayt2 + v0yt + y0
(c) vy(t) = ayt + v0y
(d) vy(t) = (1/2)ayt2 + v0yt + y0

Solutions

Expert Solution

From Newton's first equation of motion when applied along vertical direction, we have

vy=uy+ay×t, where vy is the final velocity along vertical direction, uy is the initial velocity along vertical direction, and ay is the the acceleration along vertical direction.


Related Solutions

In this lab, an apple is released from rest and falls freely until it lands in...
In this lab, an apple is released from rest and falls freely until it lands in a bowl. Watch the video here. We will be measuring y (the vertical position coordinate) as a function of time t. Notation: y0 is the value of y at t = 0; vy is the y-component of the velocity; vy0 is the value of vy at t = 0; ay is the y-component of the acceleration. The +y-direction is up. Assuming air resistance is...
An apple drops from the tree and falls freely. The apple is originally at rest a...
An apple drops from the tree and falls freely. The apple is originally at rest a height H0 above the ground. The ground is covered with a thick lawn, which is made of blades of grass of height h. When the apple enters the grass, it slows down at a constant rate so that its speed is 0 when it reaches ground level. A. Find the speed of the apple just before it enters the grass. B. Find the acceleration...
A rock is dropped from a high tower and falls freely under the influence of gravity....
A rock is dropped from a high tower and falls freely under the influence of gravity. Which one(s) of the following statements is true concerning the rock as it falls? There could be more than one. A. It will gain an equal amount of kinetic energy for each meter through which it falls. B. It will gain an equal amount of momentum during each second. C. It will gain an equal amount of momentum for each meter through which it...
An object falls from a height h from rest. If it travels a fraction of the...
An object falls from a height h from rest. If it travels a fraction of the total height of 0.5833 in the last 1.00 s, find the time of its fall. Find the height of its fall
a proton is released from rest at a positivity charged plate that is in a parallel...
a proton is released from rest at a positivity charged plate that is in a parallel plate capacitor . it hits the negative charged plate after 2.54 x10^-6 s. the electric field is 134 N/C between the plates 1) find the magnititude of the surface charge density at each plate 2) what is the magnitude of force that the proton feels moving through plates 3)what is the proton’s final speed as it hits the negative plate 4)what is the potential...
A small box is released from rest at the top of a frictionless ramp that is...
A small box is released from rest at the top of a frictionless ramp that is inclined at 36.9 0 above the horizontal. How long does it take the box to travel 8.00 m to the bottom of the incline?
A ball of clay with a mass of 4.0 kg, starting from rest, falls from a...
A ball of clay with a mass of 4.0 kg, starting from rest, falls from a height of 0.20 m above a block with mass 1.0 kg that rests on top of a spring with spring constant 90 N/m. The block then sticks to the block and the system undergoes simple harmonic motion. Please submit your answers to the following questions on a separate sheet of paper (or multiple sheets of paper). i. Write the formulas for the position, velocity,...
An electron is released from rest at a distance of 0.490 m from a large insulating...
An electron is released from rest at a distance of 0.490 m from a large insulating sheet of charge that has uniform surface charge density 3.70×10−12 C/ m 2 . 1-How much work is done on the electron by the electric field of the sheet as the electron moves from its initial position to a point 7.00×10−2 m from the sheet? W= Express your answer to three significant figures and include the appropriate units. 2-What is the speed of the...
A dipole is released from rest a distance of 4m from a very long wire with...
A dipole is released from rest a distance of 4m from a very long wire with a uniform linear charge density of 5nC/m. Describe the resulting motion of the dipole of its dipole moment vector is oriented (1) perpendicular to the wire, and (2) parallel to the wire
A dipole is released from rest a distance of 4m from a very long wire with...
A dipole is released from rest a distance of 4m from a very long wire with a uniform linear charge density of 5nC/m. Describe the resulting motion of the dipole of its dipole moment vector is oriented (1) perpendicular to the wire, and (2) parallel to the wire
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT