Question

In: Physics

A solid cylinder of radius r1 = 2.4 cm, length h1 = 5.9 cm, emissivity 0.72,...

A solid cylinder of radius r1 = 2.4 cm, length h1 = 5.9 cm, emissivity 0.72, and temperature 22°C is suspended in an environment of temperature 50°C. (a) What is the cylinder's net thermal radiation transfer rate P1? (b) If the cylinder is stretched until its radius is r2 = 0.55 cm, its net thermal radiation transfer rate becomes P2. What is the ratio P2/P1?

(a) Number Enter your answer for part (a) in accordance to the question statement Units Choose the answer for part (a) from the menu in accordance to the question statement

(b) Number Enter your answer for part (b) in accordance to the question statement Units Choose the answer for part (b) from the menu in accordance to the question statement

Solutions

Expert Solution


Related Solutions

A long, conductive cylinder of radius R1 = 2.45 cm and uniform charge per unit length...
A long, conductive cylinder of radius R1 = 2.45 cm and uniform charge per unit length λ = 302 pC/m is coaxial with a long, cylindrical, non-conducting shell of inner and outer radii R2 = 8.57 cm and R3 = 9.80 cm, respectively. If the cylindrical shell carries a uniform charge density of ρ = 79.8 pC/m^3, find the magnitude of the electric field at the following radial distances from the central axis: 1.74 c.m= _________ N/C 6.25 c.m= __________...
There is a long cylinder magnet with inner radius of R1 outher radius of R2 length...
There is a long cylinder magnet with inner radius of R1 outher radius of R2 length of L and magnetization of M=MoZ for R1<rR2 Calculate B and H everywhere Claculate bound surface Calculate the magnetic vector potential everywhere Calculate B again along z axis by assuming the cylindircal magnet is short What is the electrostatic equivalent of this structure
​An infinitely long solid insulating cylinder of radius a = 2.2 cm
An infinitely long solid insulating cylinder of radius a = 2.2 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 48 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 18.3 cm, and outer radius C =20.3 cm. The conducting shell has a linear charge density λ = 0.56 μC/m3. 
A solid cylinder with a mass of 3 kg, a radius of 25 cm, and a...
A solid cylinder with a mass of 3 kg, a radius of 25 cm, and a length of 40 cm is rolling across a horizontal floor with a linear speed of 12 m/s. The cylinder then comes to a ramp, and, as it is rolling up this ramp without slipping, it is slowing down. When the cylinder finally comes to a stop and begins rolling back down the ramp, how high is it above the floor?
A small sphere (emissivity = .9, radius = r1) is located at the center of a...
A small sphere (emissivity = .9, radius = r1) is located at the center of a spherical asbestos shell (thickness = 1cm, outer radius = r2). The thickness of the shell is small compared to the inner and outer radii of the shell. The temperature of the small sphere is 800 C, while the temperature of the inner surface of the shell is 600 C, both temperatures remaining constant. Assuming that r2/r1 = 10 and ignoring any air inside the...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
A 4.00-m-long cylinder of solid aluminum has a radius of 2.00 cm. 1) If the cylinder...
A 4.00-m-long cylinder of solid aluminum has a radius of 2.00 cm. 1) If the cylinder is initially at a temperature of 4.00∘∘C, how much will the length change when the temperature rises to 30.0°C? 2)Due to the temperature increase, by how much (in %) would the density of the aluminum cylinder decrease? 3)By what percentage does the volume of the cylinder increase?
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 25 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.5 cm, and outer radius c = 17.5 cm. The conducting shell has a linear charge density λ = -0.41μC/m. 1. What is V(P) – V(R), the potential difference between...
An infinitely long solid insulating cylinder of radius a = 4.4 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 4.4 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density p = 29 uC/m^3. Concentric with the cylinder is cylindrical conduction shell of inner radius b = 10.2cm and outer radius c= 12.2 cm. The conducting shell has a linear charge density = -0.33 uC/m. 1. What is Ey (R), the y-component of the electric field at point...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 5.6 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 45 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 17.9 cm, and outer radius c = 19.9 cm. The conducting shell has a linear charge density λ = -0.31μC/m. 1) What is Ey(R), the y-component of the electric field...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT