In: Finance
Create a loan amortization schedule in Excell for a $275,000 mortgage that will be repaid over 20 years with monthlypayments. The annual interest rate is 5.5 %.
What is your monthly payment? $
What is the total dollar amount of payments made over the life of this loan? $__
What is the total dollar amount of interest paid over the life of this loan? $_
How many months will it take to pay off the loan if you pay an extra $100 per
month? ____
Ans 1) Monthly payment is given by PV of annuity formula
PV of annuity = paymnet * (1 - (1+r/12)^- 12*n)/(r/12)
275000 = payment * (1 - 1.0046^-240)/.0046
payment = $1891.69
total dollar amount of payments made over the life of this loan = 240 * $1891.69
= $454005.6
total dollar amount of interest paid over the life of this loan = total payment - principal
= $454005.6 - $275000
= $179005.6
Again we will use the PV of anuity formula
275000 = 1991.69 * (1 - (1.0046)^-n)/.0046
n = 219.1 Months
Loan Amortization schdule is given below but due to size issue it can't be be for 240 months.
rate | 0.46% | |||||
nper | 240 | |||||
PV | 275000 | |||||
FV | 0 | PMT | $1,891.69 | |||
Month | Opening Balance | Payment | Interest | Principal Payment | Closing Balance | |
1 | $ 275,000.00 | $ 1,891.69 | $ 1,260.42 | $ 631.27 | $ 274,368.73 | |
2 | $ 274,368.73 | $ 1,891.69 | $ 1,257.52 | $ 634.17 | $ 273,734.56 | |
3 | $ 273,734.56 | $ 1,891.69 | $ 1,254.62 | $ 637.07 | $ 273,097.49 | |
4 | $ 273,097.49 | $ 1,891.69 | $ 1,251.70 | $ 639.99 | $ 272,457.49 | |
5 | $ 272,457.49 | $ 1,891.69 | $ 1,248.76 | $ 642.93 | $ 271,814.57 | |
6 | $ 271,814.57 | $ 1,891.69 | $ 1,245.82 | $ 645.87 | $ 271,168.69 | |
7 | $ 271,168.69 | $ 1,891.69 | $ 1,242.86 | $ 648.83 | $ 270,519.86 | |
8 | $ 270,519.86 | $ 1,891.69 | $ 1,239.88 | $ 651.81 | $ 269,868.05 | |
9 | $ 269,868.05 | $ 1,891.69 | $ 1,236.90 | $ 654.79 | $ 269,213.26 | |
10 | $ 269,213.26 | $ 1,891.69 | $ 1,233.89 | $ 657.80 | $ 268,555.46 | |
11 | $ 268,555.46 | $ 1,891.69 | $ 1,230.88 | $ 660.81 | $ 267,894.65 | |
12 | $ 267,894.65 | $ 1,891.69 | $ 1,227.85 | $ 663.84 | $ 267,230.81 | |
13 | $ 267,230.81 | $ 1,891.69 | $ 1,224.81 | $ 666.88 | $ 266,563.93 | |
14 | $ 266,563.93 | $ 1,891.69 | $ 1,221.75 | $ 669.94 | $ 265,893.99 | |
15 | $ 265,893.99 | $ 1,891.69 | $ 1,218.68 | $ 673.01 | $ 265,220.98 | |
16 | $ 265,220.98 | $ 1,891.69 | $ 1,215.60 | $ 676.09 | $ 264,544.89 | |
17 | $ 264,544.89 | $ 1,891.69 | $ 1,212.50 | $ 679.19 | $ 263,865.70 | |
18 | $ 263,865.70 | $ 1,891.69 | $ 1,209.38 | $ 682.31 | $ 263,183.39 | |
19 | $ 263,183.39 | $ 1,891.69 | $ 1,206.26 | $ 685.43 | $ 262,497.96 | |
20 | $ 262,497.96 | $ 1,891.69 | $ 1,203.12 | $ 688.57 | $ 261,809.38 | |
21 | $ 261,809.38 | $ 1,891.69 | $ 1,199.96 | $ 691.73 | $ 261,117.65 | |
22 | $ 261,117.65 | $ 1,891.69 | $ 1,196.79 | $ 694.90 | $ 260,422.75 | |
23 | $ 260,422.75 | $ 1,891.69 | $ 1,193.60 | $ 698.09 | $ 259,724.67 | |
24 | $ 259,724.67 | $ 1,891.69 | $ 1,190.40 | $ 701.29 | $ 259,023.38 |