In: Finance
A person purchased a $133,748 home 10 years ago by paying 20% down and signing a 30-year mortgage at 10.2% compounded monthly. Interest rates have dropped and the owner wants to refinance the unpaid balance by signing a new 20-year mortgage at 6.3 % compounded monthly. How much interest will refinancing save?
Money Saved: (Round to the nearest cent as needed.)
EMI :
EMI = Loan / PVAF (r%, n)
PVAF = SUm [ PVF(r%, n) ]
PVF(r%, n) = 1 / ( 1 + r)^n
r = Int rate per period
n = No. of periods
Loan = Price ( 1 - Downpayment Ratio )
= $ 133748 ( 1 - 0.20 )
= $ 133748 * 0.8
= $ 106998.40
EMI = Loan / PVAF (r%, n)
= $ 106998.40 / PVAF (0.85%, 360)
= $ 106998.40 / 112.0591
= $ 954.84
Outstanding Bal after 10 Years:
Month | Opening bal | Instalment | Int | Principal Repay | Clsoing Bal |
115 | $ 98,330.45 | $ 954.84 | $ 835.81 | $ 119.03 | $ 98,211.42 |
116 | $ 98,211.42 | $ 954.84 | $ 834.80 | $ 120.04 | $ 98,091.38 |
117 | $ 98,091.38 | $ 954.84 | $ 833.78 | $ 121.06 | $ 97,970.32 |
118 | $ 97,970.32 | $ 954.84 | $ 832.75 | $ 122.09 | $ 97,848.22 |
119 | $ 97,848.22 | $ 954.84 | $ 831.71 | $ 123.13 | $ 97,725.09 |
120 | $ 97,725.09 | $ 954.84 | $ 830.66 | $ 124.18 | $ 97,600.92 |
121 | $ 97,600.92 | $ 954.84 | $ 829.61 | $ 125.23 | $ 97,475.69 |
122 | $ 97,475.69 | $ 954.84 | $ 828.54 | $ 126.30 | $ 97,349.39 |
123 | $ 97,349.39 | $ 954.84 | $ 827.47 | $ 127.37 | $ 97,222.02 |
124 | $ 97,222.02 | $ 954.84 | $ 826.39 | $ 128.45 | $ 97,093.57 |
125 | $ 97,093.57 | $ 954.84 | $ 825.30 | $ 129.54 | $ 96,964.02 |
Int for Balance 20 Years:
= Amount to be Paid - Outstsanding Balance
= [ 954.84 * 240 ] - [ 97600.92 ]
= $ 229161.44 - 97600.92
= $ 131560.52
New EMI:
EMI = Loan / PVAF (r%, n)
= $ 97600.92 / PVAF (0.525%,240)
= 97600.92 / 136.2685
= $ 716.24
Int = [Amount tobe Paid ] - Loan
= [ 716.24 * 240 ] - 97600.92
= 171897.6 - 97600.92
= 74296.65
Int Saved = $ 131560.52 - $ 74296.65
= $ 57263.87
Pls do rate, if the answer is correct and comment, if any further assistance is required.