In: Math
Determine the sample size n needed to construct a 90% confidence interval to estimate the population proportion for the following sample proportions when the margin of error equals 8%.
a. p over bar equals 0.10
b. p over bar equals 0.20
c. p over bar equals 0.30
Click the icon to view a table of standard normal cumulative probabilities.
Solution :
Given that,
a) = 0.10
1 - = 1 - 0.10 = 0.90
margin of error = E = 8% = 0.08
At 90% confidence level
= 1 - 90%
=1 - 0.90 =0.10
/2
= 0.05
Z/2
= 1.645
sample size = n = (Z / 2 / E )2 * * (1 - )
= (1.645 / 0.08)2 * 0.10 * 0.90
= 38.05
sample size = n = 39
b) = 0.20
1 - = 1 - 0.20 = 0.80
sample size = n = (Z / 2 / E )2 * * (1 - )
= (1.645 / 0.08)2 * 0.20 * 0.80
= 67.65
sample size = n = 68
c) = 0.30
1 - = 1 - 0.30 = 0.70
sample size = n = (Z / 2 / E )2 * * (1 - )
= (1.645 / 0.08)2 * 0.30 * 0.70
= 88.79
sample size = n = 89