In: Math
Refer to the Lincolnville School District bus data.
Conduct a test of hypothesis to reveal whether the mean maintenance cost is equal for each of the bus manufacturers. Use the .01 significance level.
Conduct a test of hypothesis to determine whether the mean miles traveled since the last maintenance is equal for each bus manufacturer. Use the .05 significance level.
Show work in Excel.
ID | Manufacturer | Engine Type | Engine Type (0=diesel) | Capacity | Maintenance cost | Age | Odometer Miles | Miles |
122 | Bluebird | Gasoline | 1 | 55 | 9394 | 10 | 116580 | 11967 |
279 | Bluebird | Diesel | 0 | 55 | 1008 | 2 | 22672 | 11925 |
500 | Bluebird | Gasoline | 1 | 55 | 5329 | 5 | 50765 | 11922 |
520 | Bluebird | Diesel | 0 | 55 | 4794 | 10 | 119130 | 11896 |
714 | Bluebird | Diesel | 0 | 42 | 3742 | 7 | 73703 | 11837 |
875 | Bluebird | Diesel | 0 | 55 | 4376 | 9 | 97947 | 11814 |
600 | Bluebird | Diesel | 0 | 55 | 4832 | 10 | 119860 | 11800 |
953 | Bluebird | Diesel | 0 | 55 | 5160 | 10 | 117700 | 11798 |
101 | Bluebird | Diesel | 0 | 55 | 1955 | 4 | 41096 | 11789 |
358 | Bluebird | Diesel | 0 | 55 | 2775 | 6 | 70086 | 11782 |
29 | Bluebird | Gasoline | 1 | 55 | 5352 | 6 | 69438 | 11781 |
686 | Bluebird | Diesel | 0 | 55 | 1569 | 3 | 34674 | 11757 |
887 | Bluebird | Diesel | 0 | 55 | 3743 | 8 | 93672 | 11704 |
464 | Bluebird | Gasoline | 1 | 55 | 2540 | 3 | 34530 | 11698 |
43 | Bluebird | Gasoline | 1 | 55 | 8263 | 9 | 102969 | 11615 |
704 | Bluebird | Diesel | 0 | 55 | 4218 | 8 | 83424 | 11610 |
814 | Bluebird | Diesel | 0 | 55 | 2028 | 4 | 40824 | 11576 |
39 | Bluebird | Gasoline | 1 | 55 | 5821 | 6 | 69444 | 11533 |
699 | Bluebird | Gasoline | 1 | 55 | 9069 | 9 | 98307 | 11518 |
75 | Bluebird | Diesel | 0 | 55 | 3011 | 6 | 71970 | 11462 |
982 | Bluebird | Diesel | 0 | 55 | 505 | 1 | 10276 | 11359 |
321 | Bluebird | Diesel | 0 | 42 | 2732 | 6 | 70122 | 11358 |
884 | Bluebird | Diesel | 0 | 55 | 4364 | 9 | 92457 | 11231 |
57 | Bluebird | Diesel | 0 | 55 | 3190 | 7 | 79240 | 11222 |
731 | Bluebird | Diesel | 0 | 42 | 3213 | 6 | 68526 | 11168 |
135 | Bluebird | Diesel | 0 | 55 | 3560 | 7 | 76426 | 11127 |
692 | Bluebird | Diesel | 0 | 55 | 3770 | 8 | 93248 | 11048 |
200 | Bluebird | Diesel | 0 | 55 | 5168 | 10 | 103700 | 11018 |
540 | Bluebird | Gasoline | 1 | 55 | 3656 | 4 | 45284 | 10945 |
660 | Bluebird | Gasoline | 1 | 55 | 6213 | 6 | 64434 | 10911 |
482 | Bluebird | Gasoline | 1 | 55 | 10575 | 10 | 116534 | 10802 |
984 | Bluebird | Diesel | 0 | 55 | 3809 | 8 | 87664 | 10760 |
977 | Bluebird | Diesel | 0 | 55 | 3769 | 7 | 79422 | 10759 |
326 | Bluebird | Diesel | 0 | 55 | 4563 | 9 | 107343 | 10724 |
554 | Bluebird | Diesel | 0 | 42 | 1826 | 4 | 44604 | 10662 |
695 | Bluebird | Diesel | 0 | 55 | 1061 | 2 | 23152 | 10633 |
861 | Bluebird | Gasoline | 1 | 55 | 9669 | 10 | 106040 | 10551 |
883 | Bluebird | Gasoline | 1 | 55 | 1881 | 2 | 20742 | 10344 |
954 | Bluebird | Diesel | 0 | 42 | 5284 | 10 | 101000 | 10235 |
768 | Bluebird | Diesel | 0 | 42 | 3173 | 7 | 71778 | 10227 |
490 | Bluebird | Gasoline | 1 | 55 | 10133 | 10 | 106240 | 10210 |
725 | Bluebird | Diesel | 0 | 55 | 2356 | 5 | 57065 | 10209 |
507 | Bluebird | Diesel | 0 | 55 | 3690 | 7 | 72849 | 10095 |
40 | Bluebird | Gasoline | 1 | 55 | 9573 | 10 | 118470 | 10081 |
918 | Bluebird | Diesel | 0 | 55 | 2470 | 5 | 53620 | 10075 |
387 | Bluebird | Gasoline | 1 | 55 | 6863 | 8 | 89960 | 10055 |
418 | Bluebird | Diesel | 0 | 55 | 4513 | 9 | 104715 | 10000 |
10 | Keiser | Gasoline | 1 | 14 | 4646 | 5 | 54375 | 11973 |
751 | Keiser | Diesel | 0 | 14 | 1078 | 2 | 22444 | 11948 |
759 | Keiser | Diesel | 0 | 55 | 3952 | 8 | 87872 | 11883 |
365 | Keiser | Diesel | 0 | 55 | 3065 | 6 | 63384 | 11778 |
162 | Keiser | Gasoline | 1 | 55 | 3143 | 3 | 31266 | 11758 |
370 | Keiser | Gasoline | 1 | 55 | 7766 | 8 | 86528 | 11707 |
948 | Keiser | Diesel | 0 | 42 | 4342 | 9 | 97956 | 11691 |
678 | Keiser | Diesel | 0 | 55 | 3361 | 7 | 75229 | 11668 |
481 | Keiser | Gasoline | 1 | 6 | 3097 | 3 | 34362 | 11662 |
693 | Keiser | Gasoline | 1 | 55 | 9193 | 9 | 101889 | 11461 |
989 | Keiser | Diesel | 0 | 55 | 4795 | 9 | 106605 | 11418 |
724 | Keiser | Diesel | 0 | 42 | 3754 | 8 | 91968 | 11344 |
732 | Keiser | Diesel | 0 | 42 | 4640 | 9 | 101196 | 11342 |
880 | Keiser | Gasoline | 1 | 55 | 8410 | 9 | 97065 | 11336 |
61 | Keiser | Diesel | 0 | 55 | 4139 | 9 | 103536 | 11148 |
754 | Keiser | Diesel | 0 | 14 | 7380 | 14 | 146860 | 11003 |
353 | Keiser | Gasoline | 1 | 55 | 4279 | 4 | 45744 | 10902 |
705 | Keiser | Diesel | 0 | 42 | 2152 | 4 | 47596 | 10755 |
767 | Keiser | Diesel | 0 | 55 | 2985 | 6 | 71538 | 10726 |
120 | Keiser | Diesel | 0 | 42 | 4723 | 10 | 110320 | 10674 |
9 | Keiser | Gasoline | 1 | 55 | 3527 | 4 | 46848 | 10591 |
603 | Keiser | Diesel | 0 | 14 | 2116 | 4 | 44384 | 10518 |
427 | Keiser | Gasoline | 1 | 55 | 6927 | 7 | 73423 | 10355 |
45 | Keiser | Diesel | 0 | 55 | 3124 | 6 | 60102 | 10167 |
38 | Keiser | Gasoline | 1 | 14 | 5976 | 6 | 61662 | 10140 |
396 | Thompson | Diesel | 0 | 14 | 1072 | 2 | 21858 | 11969 |
193 | Thompson | Diesel | 0 | 14 | 5922 | 11 | 128711 | 11248 |
833 | Thompson | Diesel | 0 | 14 | 3920 | 8 | 90968 | 11112 |
671 | Thompson | Gasoline | 1 | 14 | 6733 | 8 | 89792 | 11100 |
398 | Thompson | Diesel | 0 | 6 | 4752 | 9 | 95922 | 10802 |
156 | Thompson | Diesel | 0 | 14 | 6212 | 12 | 140460 | 10473 |
168 | Thompson | Gasoline | 1 | 14 | 7004 | 7 | 83006 | 10315 |
314 | Thompson | Diesel | 0 | 6 | 5408 | 11 | 128117 | 10128 |
Conduct a test of hypothesis to reveal whether the mean maintenance cost is equal for each of the bus manufacturers. Use the .01 significance level.
Here, we have to use one way ANOVA test.
Null hypothesis: H0: The mean maintenance cost is equal for each of the bus manufacturers.
Alternative hypothesis: Ha: The mean maintenance cost is not equal for each of the bus manufacturers.
α = 0.01
ANOVA table by using excel is given as below:
Anova: Single Factor |
|||||||
SUMMARY |
|||||||
Groups |
Count |
Sum |
Average |
Variance |
|||
Bluebird |
47 |
210558 |
4479.957 |
6514563 |
|||
Keiser |
25 |
112570 |
4502.8 |
4199550 |
|||
Thompson |
8 |
41023 |
5127.875 |
3718724 |
|||
ANOVA |
|||||||
Source of Variation |
SS |
df |
MS |
F |
P-value |
F crit |
|
Between Groups |
2957507.198 |
2 |
1478754 |
0.266979 |
0.766395 |
3.115366 |
|
Within Groups |
426490176.8 |
77 |
5538833 |
||||
Total |
429447684 |
79 |
Here, P-value = 0.766395 > α = 0.01
So, we do not reject the null hypothesis
There is sufficient evidence to conclude that the mean maintenance cost is equal for each of the bus manufacturers.
Conduct a test of hypothesis to determine whether the mean miles traveled since the last maintenance is equal for each bus manufacturer. Use the .05 significance level.
Here, we have to use one way ANOVA test.
Null hypothesis: H0: The mean miles traveled since the last maintenance is equal for each bus manufacturer.
Alternative hypothesis: Ha: The mean miles traveled since the last maintenance is not equal for each bus manufacturer.
α = 0.05
ANOVA table by using excel is given as below:
Anova: Single Factor |
||||||
SUMMARY |
||||||
Groups |
Count |
Sum |
Average |
Variance |
||
Bluebird |
47 |
522593 |
11119 |
413916.7 |
||
Keiser |
25 |
279948 |
11197.92 |
331038.1 |
||
Thompson |
8 |
87147 |
10893.38 |
354085.7 |
||
ANOVA |
||||||
Source of Variation |
SS |
df |
MS |
F |
P-value |
F crit |
Between Groups |
562609.485 |
2 |
281304.7 |
0.735158 |
0.482764 |
3.115366 |
Within Groups |
29463681.72 |
77 |
382645.2 |
|||
Total |
30026291.2 |
79 |
Here, p-value = 0.482764 > α = 0.05
So, we do not reject the null hypothesis
There is sufficient evidence to conclude that the mean miles traveled since the last maintenance is equal for each bus manufacturer.